Synthesis of 20α - and 20β-Acetamido, Amino, Nitro and Hydroxy Derivatives of 14-Hydroxy-5 $\beta, 14 \beta$-pregnane 3β-Glycosides: Pregnanes that Bind to the Digitalis Receptor

John F. Templeton, ${ }^{* a}$ Yangzhi Ling, ${ }^{a}$ Talal H. Zeglam, ${ }^{a}$ Kirk Marat ${ }^{\boldsymbol{b}}$ and Frank S. LaBella ${ }^{\boldsymbol{c}}$
${ }^{a}$ Faculty of Pharmacy, University of Manitoba, Canada R3T 2N2
${ }^{\text {b }}$ Department of Chemistry, University of Manitoba, Canada R3T 2N2
${ }^{c}$ Department of Pharmacology and Therapeutics, University of Manitoba, Canada R3E OW3

Abstract

Synthesis of 20α - and 20 β-acetamido-, amino-, nitro-and hydroxy- 3β-glycoside (α-L-rhamnopyranoside and tris- β-D-digitoxoside) and genin derivatives of 14 -hydroxy- $5 \beta, 14 \beta$-pregnane together with the $\mathrm{C}-20$ oxime, hydrazone and amidinohydrazone is described from digitoxin. Ortho esters were also isolated. Structures were established by NMR measurements. These compounds have been shown to bind to the digitalis receptor of heart muscle. The 20β derivatives were consistently more potent than are the corresponding 20α compounds. The 20β-nitro $\alpha-L$-rhamnoside derivative proved to be the most potent. Receptor binding data are given and structure-activity relationships are presented.

Certain pregnanes and related steroids bind to the cardiac glycoside recognition site on $\mathrm{Na}^{+}, \mathrm{K}^{+}$-ATPase and inhibit the enzyme (the sodium pump) in membranes, cells and tissues. ${ }^{1}$ Previously we have shown that the 20β-hydroxy substituent can replace the α, β-unsaturated γ-lactone of the cardiac glycosides by effectively binding to the ouabain binding site of heart muscle and the $\mathrm{C}-20$ alcohol can still retain positive inotropic activity. As part of our structure-activity investigation of these pregnanes we compared 20α - and 20β-amino and -nitro, $20 \alpha-$ hydroxy and related derivatives with the corresponding 20β hydroxy derivative for binding potency in a $\left[{ }^{3} \mathrm{H}\right]$ ouabain radioligand binding assay. ${ }^{2}$ We report here on the synthesis of the C-20 oxime, 20α - and 20β-acetamido-, 20α - and 20β-amino-, 20α - and 20β-nitro- and 20α - and 20β-hydroxy- $5 \beta, 14 \beta$-pregnan3β-yl x-L-rhamnopyranosides and the C-20 oxime, hydrazone, amidinohydrazone, and the 20ξ-amino- and 20ξ-nitro- $5 \beta, 14 \beta$ pregnane 3β-tris- β-d-digitoxosides (Schemes 1-6). Receptorbinding data are compared and the products' structure-activity relationships discussed. Structures were established by NMR methods.

Results and Discussion

3β-Acetoxy- 1a and 3β-hydroxy- 1b 14 -hydroxy- $5 \beta, 14 \beta$ -pregnan-20-one were prepared as previously reported. ${ }^{3}$ Treatment of ketone 1b with hydroxylamine gave the trans (anti)oxime $\mathbf{2 b}$ together with a minor product assigned the cis (syn) structure 2c (Scheme 1). The trans stereochemistry was assigned to the major product by analogy with the $\mathrm{C}-20$ oxime in the $14 \alpha-$ series. ${ }^{4}$ The trans-oxime 2a was isolated from similar treatment of compound 1a. Hydrogenation of the trans-oxime 2b with PtO_{2} in ethanol containing a trace of chloroform ${ }^{5}$ gave a mixture of the $20 x-3 \mathrm{a}$ and 20β - 3b amine hydrochlorides ($1: 6$), which were separated by crystallization and flash chromatography. Acetylation of the amine hydrochlorides 3a and 3b and separation by flash chromatography gave the 20α - and 20β acetamide 4a and 5a. A small amount of the trans oxime diacetate 6 was also obtained from acetylation of the unreduced starting oxime 2a. Selective hydrolysis of the acetamides $\mathbf{4 a}$ and $\mathbf{5 a}$ also gave the 3β-alcohols $\mathbf{4 b}$ and $\mathbf{5 b}$. Reduction of the transoxime 2 a with sodium in propan-1-ol ${ }^{6}$ gave, after acetylation and selective hydrolysis without purification of intermediates, the 3β-alcohols $\mathbf{4 b}$ and $\mathbf{5 b}$ in approximately equal amounts.
Initial attempts to prepare the $\alpha-\mathrm{L}$-rhamnopyranoside of the
alcohol $\mathbf{4 b}$ by using 2,3,4-tri- O-acetylrhamnopyranosyl bromide (hereafter referred to as acetobromorhamnose) and Fetizon's reagent ${ }^{7}$ gave instead the steroid ortho ester 9a together with the 20α-amine ortho ester 9b (Scheme 2). Several reagent byproducts were also isolated as epimeric mixtures based on their NMR spectra, namely tetra-O-acetyl-L-rhamnopyranose 10a, 2,3,4-tri- O-acetyl-L-rhamnopyranose $\mathbf{1 0 b}$ and the rhamnose ortho ester 11. The exo isomer formed results typically from attack of the ortho ester alkoxy group on the least hindered side of the intermediate dioxolenium ion. ${ }^{8}$ Dependence of ortho ester formation on reaction conditions has been previously observed. ${ }^{9}$ The structures of the products $9 \mathrm{a}, 9 \mathrm{~b}$ and 11 were established from NMR studies (see below). However, when the 20α-acetamide alcohol 4b was treated with acetobromorhamnose and mercury(II) cyanide ${ }^{10}$ the acetamido α-Lrhamnoside 8a was obtained; similar treatment of the $20 \beta-$ acetamide alcohol 5b gave the corresponding acetamide $\alpha-\mathrm{L}-$ rhamnoside 8b. Attempts to hydrolyse the 20α - and 20β acetamide $\mathbf{4 b}$ and $\mathbf{5 b}$ were unsuccessful. Dehydration of the acetamide alcohols ($\mathbf{4 b}$ on treatment with triphenylphosphine$\mathrm{CCl}_{4}{ }^{11}$ and 5b on HCl work-up) gave the $\mathrm{C}-14$ unsaturated derivatives 7 a and $7 \mathrm{7b}$.

Attempts to protect the amine while allowing preparation of the C-3 glycoside proved unsuccessful. For example, when a mixture of the 20α - and 20β-amine epimers 3 a and $\mathbf{3 b}$ was treated with trifluoroacetic anhydride (TFAA) in pyridine the C -14 unsaturated derivatives 12a and 12b were obtained (Scheme 3). Oxidation of the mixture of alcohols 3a and 3b with dimethyldioxirane, ${ }^{12}$ followed by acetylation, yielded the $20 \alpha-$ nitro 14 a and 20β-nitro 14b derivatives, in low yield, together with the 20β-nitro- 3 -ketone 13. Treatment of the 20β-nitro derivative with iron filings in acetic acid ${ }^{13}$ gave the 20β-amine 15.

Digitoxigenin α-L-rhamnoside (evomonoside) tribenzoate 16 was treated with ozone and zinc-acetic acid as described previously ${ }^{3}$ to give the ketone 17 together with the 20β-alcohol 18 (Scheme 4). Reduction of a keto group to an alcohol group under these Clemmensen-type conditions is unusual as the alcohol is not considered to be an intermediate in the Clemmensen reduction. ${ }^{14}$ The C-3 ketone was reduced to the hydrocarbon under these conditions. ${ }^{3}$ Hydrolysis of the tribenzoate 18 gave the rhamnoside 19, while pyridinium dichromate (PDC) oxidation yielded the 20 -ketone $17 .{ }^{15}$ This route to diol 19 (and ketone 17) is different from that previously reported. ${ }^{15}$

1a; $R=A c$
b; $R=H$

2a; $R=A c$, trans b; $\mathrm{R}=\mathrm{H}$, trans c; $R=H$, cis

3a; 20α b; 20β

4a; $R=A c$
b; $R=H$

5a; $R=A c$
b; $R=H$

6

7a; 20α
b; 20β

8a; 20 α
b; 20β

$$
4 a \xrightarrow{\text { vii }} 4 b 5 a \xrightarrow{\text { vii }} 5 b
$$

Scheme 1 Reagents: i, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$-pyridine; ii, $\mathrm{H}_{2}-\mathrm{PtO}_{2}-\mathrm{CHCl}_{3}$; iii, $\mathrm{Na}-\mathrm{PrOH}$; iv, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; v, $\mathrm{CCl}_{4}-\mathrm{Ph}_{3} \mathrm{P}$ or aq. HCl ; vi, acetobromorhamnose- $\mathrm{Hg}(\mathrm{CN})_{2}-\mathrm{MeCN}$, vii, $\mathrm{KOH}-\mathrm{EtOH}$

Scheme 2 Reagents: i, acetobromorhamnose- $\mathrm{Ag}_{2} \mathrm{CO}_{3}$-Celite

Scheme 3 Reagents: i, TFAA-pyridine; ii, dimethyldioxirane- $\mathrm{Me}_{2} \mathrm{CO}$; iii, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; iv, Fe-HOAc

Formation of the trans-oxime 20 from ketone 17, followed by reduction with sodium in propan-1-ol, gave an epimeric mixture of the 20ξ-amines $23 \mathbf{a} / \mathbf{b}$, which on oxidation with dimethyldioxirane gave the 20ξ-nitro epimers $\mathbf{2 4 a} / \mathbf{b}$. Neither the amine nor
the nitro epimers could be efficiently separated by flash chromatography.

Acetylation of the 20ξ-nitro mixture 24a and 24b, followed by flash chromatography, gave the pure 20α-nitro and 20β-nitro tri-

17
18
19

$\mathrm{R}^{1}=$ tribenzoyloxyrhamnopyranosyl, $\mathrm{R}^{2}=$ rhamnopyranosyl, $\mathrm{R}^{3}=$ triacetoxyrhamnopyranosyl
Scheme 4 Reagents: i, tri-o-benzoylrhamnopyranosyl bromide- $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{Hg}(\mathrm{CN})_{2}$; ii, $\mathrm{O}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{Zn}-\mathrm{HOAc}$; iv, $\mathrm{NH}_{3}-\mathrm{MeOH}$; v, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}-$ pyridine; vi, $\mathrm{Na}-\mathrm{PrOH}$; vii, $\mathrm{Fe}-\mathrm{HOAc}$; viii, dimethyldioxirane- $\mathrm{Me}_{2} \mathrm{CO}$; ix, $\mathrm{Ac}_{2} \mathrm{O}-$ pyridine; x, PDC; xi, $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{aq}$. MeOH ; xii, $\mathrm{Ac}_{2} \mathrm{O}-$ DMAP- $\mathrm{Et}_{2} \mathrm{O}$.
O-acetyl- x-L-rhamnosides 21a and 21b. Mild hydrolysis of either cornpound 21a or 21b with triethylamine in aq. methanol gave the 20β-nitro rhamnoside 24 , demonstrating the easy epimerization of the 20α-nitro epimer. ${ }^{16}$ It was therefore necessary to use a different route to the 20α-nitro α-L-rhamnoside 24 from the triacetate 21a. Treatment of the 20α - and 20β-nitro derivatives 21a and 21b with iron in acetic acid gave the corresponding 20α and 20β-amines 22a and 22b, which on hydrolysis yielded the 20α - and 20β-amino α-L-rhamnosides 23a and 23b. Subsequent oxidation of each amine with dimethyldioxirane yielded the $20 x$ - and 20β-nitro x-L-rhamnosides $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$. This route was also required to obtain the 20α-amino α-L-rhamnoside $23 a$. Acetylation of the 20α-amine 22a and 20β-amine 22 b followed by alkaline hydrolysis gave the 20α - and 20β-acetamido α-Lrhamnosides $8 \mathbf{a}$ and $\mathbf{8 b}$, respectively, which showed identical properties with those obtained earlier. Correlation of the C-20 stereochemistry of these rhamnosides with that determined for the genins $\mathbf{4 a}$ and $5 \mathbf{a}$ established the $\mathbb{C}-20$ configuration for all the derivatives (see below).

The 20 -ketone 1 a was reduced with sodium borohydride in ethanol to give the $\mathrm{C}-20$ alcohols $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$ in the ratio $1: 1.8$ (20x:20ß) based on their C-20 proton signals at $\delta 4.0$ (Scheme 5). Lindig has reported a ratio of $1: 4(20 x: 20 \beta)$ in a similar reduction. ${ }^{17}$ Flash chromatographic separation gave pure diols 25a and $\mathbf{2 5 b}$ in 30 and 40% yield, respectively. Acetylation of the C-20 alcohols gave the $3 \beta, 20 \alpha$-diacetate 25 c and the $3 \beta, 20 \beta$ diacetate 25d. Dehydration with triphenylphosphine-carbon tetrachloride ${ }^{11}$ gave the C-14 unsaturated 20α - 26a and 20 $\boldsymbol{\beta}^{-26 b}$ alcohols, respectively.

The 20ξ-alcohols $25 a / b$ were protected as the 20ξ-silyl ether $\mathbf{2 8 a} / \mathbf{b}$, which after separation gave separate epimers $28 a$ and 28b. When a mixture of the silyl ethers $\mathbf{2 8 a} / \mathbf{b}$ was treated with lithium aluminium hydride (LAH) in diethyl ether unexpected desilylation of the 20α-silyl ether 28a but not the 20β-silyl ether 28b occurred as well as deacetylation to give the $3 \beta, 14 \beta, 20 \alpha$-triol $\mathbf{2 7 a}$ and the 20β-silyl ether 27b. Treatment of 20α-silyl ether 28a with LAH also gave triol 27a. However, alkaline hydrolysis of the 20α-silyl ether 28a gave the 3β-alcohol 29. This alcohol on reaction with acetobromorhamnose and Fetizon's reagent, followed by basic hydrolysis, gave the 20α-hydroxy rhamnoside 30a and the $20 x$-silyl ether rhamnoside $\mathbf{3 0 b}$, some loss of the silyl group having occurred during the glycosylation reaction.

The trisdigitoxoside 20 -ketone ${ }^{3} 31$ was converted into the trans-oxime 32, which was reduced with sodium in propan-1-ol to a mixture ($1: 1$) of the 20ξ-amines 33 (Scheme 6). Oxidation of the amine with dimethyldioxirane yielded the 20ξ-nitro epimers 36. The ketone 31 was converted into the 20 -hydrazone 34 and the amidinohydrazone 35 , which were assigned the trans structure by analogy with the oxime 32 .

Nuclear Magnetic Resonance Analyses.-Steroid structures, except for the C-20 configuration, were established by ${ }^{1} \mathrm{H}$ NMR (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectral analysis. ${ }^{13} \mathrm{C}$ NMR assignments are based on published data, ${ }^{18}$ polarization transfer ${ }^{19}$ and internal consistency. COSY, ${ }^{20} \mathrm{CH}$ correlation, ${ }^{21}$ and nuclear Overhauser effect (NOE) measurements ${ }^{22}$ were performed as indicated in the Tables.

The configuration of the ortho esters 9 a and 11 was

25a; $20 \alpha, R=H$
26a; 20α
b; $20 \beta, \mathrm{R}=\mathrm{H}$
b; 20β
c; $20 \alpha, R=A c$
d; $20 \beta, R=A c$
iii

Scheme 5 Reagents: i, $\mathrm{NaBH}_{4}-\mathrm{EtOH}$; ii, $\mathrm{Ph}_{3} \mathrm{P}_{-}-\mathrm{CCl}_{4}$; iii, $\mathrm{Bu}^{\prime} \mathrm{Me}_{2} \mathrm{SiCl}^{2}$-imidazole-DMF; iv, LAH-Et ${ }_{2} \mathrm{O}$; v, aq. $\mathrm{KOH}-\mathrm{EtOH}$; vi, aceto-bromorhamnose- $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ Celite; vii, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine

Scheme 6 Reagents: i, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$-pyridine- NaOAc ; ii, $\mathrm{Na}-\mathrm{PrOH}$; iii, $\mathrm{NH}_{2} \mathrm{NH}_{2}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{EtOH}$; iv, aminoguanidine hydrogen carbonate- NaOH $\mathrm{EtOH} ; \mathbf{v}$, dimethyldioxirane- $\mathrm{Me}_{2} \mathrm{CO}$
established as follows (see Tables 1 and 3). The axial orientation of $1^{\prime}-\mathrm{H}$ in 9 a and 11 was confirmed by the NOE observed at 3^{\prime} H and $5^{\prime}-\mathrm{H}$ when $1^{\prime}-\mathrm{H}$ was irradiated; a typical $1-3$ diaxial interaction. $2^{\prime}-\mathrm{H}$ has an axial-equatorial coupling to $1^{\prime}-\mathrm{H}$. An NOE between the $4^{\prime}-\mathrm{H}$ and the ortho ester methyl determines the methyl configuration. Both $3^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$ show diaxial couplings to $4^{\prime}-\mathrm{H}$. An NOE was observed between the ortho ester methyl and the $4^{\prime}-\mathrm{H}$ in ortho esters 9 a and 11, confirming the configuration of the quaternary ortho ester carbon. Other NOE measurements shown in Table 3 are consistent with the assigned structures. A similar NOE would be highly unlikely for the alternative configuration. The structure of the amino compound 9 b was inferred from correspondence of its ${ }^{1} \mathrm{H}$ NMR with that of the acetamido compound $9 \mathbf{9}$.
The C-20 stereochemistry for the 20α - and 20ß-alcohol 25a
and 25b and hence the glycoside 19 was consistent with earlier assignments. ${ }^{18}$ Further NMR analysis was required which would employ coupling constants and NOE measurements to determine both the configurational and conformational structures necessary to establish firmly the configuration of the remaining 20α - and 20β-epimer. ${ }^{23}$ Owing to the rotational freedom about the $\mathrm{C}-17 / \mathrm{C}-20$ bond, it is not possible to solve the conformational and configurational problems independently. The three-bond coupling between $17-\mathrm{H}$ and $20-\mathrm{H}$ coupled with NOE measurements between $20-\mathrm{H}$ and $\mathrm{C}-13$ methyl can be used to locate the position of $20-\mathrm{H}$ uniquely. Care was taken to ensure that the observed couplings were not subject to the effects of virtual coupling. ${ }^{24}$ The size of the NOE observed between the $\mathrm{C}-13$ and $\mathrm{C}-20$ methyls was then used to determine the spatial orientation of the C-20 methyl. Other NOE

Table 1 Chemical shifts $(J \text { in } \mathrm{Hz})^{a}$

Compd.	$10-\mathrm{Me}$	13-Me	$3-\mathrm{H}^{\text {b }}$	$20-\mathrm{H}^{\text {c }}$	20-NHCOMe	20-Me	5'-Me	Others
2a	0.95	0.96	5.07			1.91		$\begin{aligned} & 2.04(\mathrm{~s}, 3-\mathrm{OAc}), 2.35(\mathrm{~m}, 17-\mathrm{H}), 6.39(\mathrm{~s}, 14-\mathrm{OH}), 10.24(\mathrm{~s}, \\ & =\mathrm{NOH}) \end{aligned}$
$2 \mathbf{b}^{\text {d }}$	0.94	0.97	4.08			1.93		2.46 (dd, J 5.0, 9.2, 17-H)
$3 a^{\circ}$	0.97	0.97	4.04	3.46 (ddd, J 1.5, 6.7, 13.5)		$\begin{aligned} & 1.25 \\ & (\mathrm{~d}, J 6.7) \end{aligned}$		
$3 b^{\text {e }}$	1.02	1.09	4.08	3.55 (ddd, J 1.5, 6.7, 13.5)		$\begin{aligned} & 1.41(\mathrm{~d}, \\ & J 6.7) \end{aligned}$		
4a	0.94	0.95	5.06	3.71	1.88	$\begin{aligned} & 1.16(\mathrm{~d}, \\ & J 6.4) \end{aligned}$		2.03 (s, 3-OAc), 7.64 (d, J 3.2, 20-N HAc)
4b	0.93	0.94	4.12	3.72	1.90	$\begin{aligned} & 1.16(\mathrm{~d}, \\ & J 6.4) \end{aligned}$		7.68 (br s, 20-NHAc)
5a	0.95	1.07	5.05	3.81	1.91	$\begin{aligned} & 1.21(\mathrm{~d}, \\ & J 6.8) \end{aligned}$		2.03 (s, 3-OAc), 7.00 (d, J 6.1, 20-NHAc)
5b	0.96	1.07	4.09	3.75	1.92	$\begin{aligned} & 1.21(\mathrm{~d}, \\ & J 6.7) \end{aligned}$		
6	0.96	0.97	5.08					$\begin{aligned} & 2.05(\mathrm{~s},=\mathrm{NOAc}), 2.06(\mathrm{~s}, 3-\mathrm{OAc}), 2.60(\mathrm{~m}, 17-\mathrm{H}), 3.40(\mathrm{~s}, \\ & 14-\mathrm{OH}) \end{aligned}$
$7 \mathrm{a}^{\text {d }}$	0.97	0.98	4.05	4.09	1.93	$\begin{aligned} & 1.15(\mathrm{~d}, \\ & J 6.5) \end{aligned}$		5.13 (br s, 15-H)
7b	0.94	0.90	4.08	4.13	1.94	$\begin{aligned} & 1.10(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		5.12 (br s, 15-H), 5.25 (d, $J 8.8,20-\mathrm{NHAc})$
$8 \mathbf{a}^{\text {d }}$	0.95	0.98	3.96	3.67	1.93	$\begin{aligned} & 1.27(\mathrm{~d}, \\ & J 6.0) \end{aligned}$	$\begin{aligned} & 1.17(\mathrm{~d} \\ & J 6.4) \end{aligned}$	$\begin{aligned} & 3.39\left(\mathrm{t}, J 9.4,4^{\prime}-\mathrm{H}\right), 3.67\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.72\left(\mathrm{dd}, J 3.4,9.4,3^{\prime}-\mathrm{H}\right), \\ & 3.81\left(\mathrm{dd}, J 1.5,3.1,2^{\prime}-\mathrm{H}\right) \end{aligned}$
$8 \mathbf{b}^{\text {d }}$	0.96	1.04	3.95	3.85	1.93	$\begin{aligned} & 1.27(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 1.15(\mathrm{~d}, \\ & J 6.0) \end{aligned}$	$\begin{aligned} & 3.39\left(\mathrm{t}, J 9.4,4^{\prime}-\mathrm{H}\right), 3.67\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.73\left(\mathrm{dd}, J 3.3,9.5,3^{\prime}-\mathrm{H}\right), \\ & 3.85\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right), 4.80\left(\mathrm{~s}, 1^{\prime}-\mathrm{H}\right) \end{aligned}$
$9 a^{\text {e }}$	0.96	0.98	4.11	3.67	1.92	$\begin{aligned} & 1.20(\mathrm{~d}, \\ & J 6.4) \end{aligned}$	$\begin{aligned} & 1.18(\mathrm{~d}, \\ & J 6.7) \end{aligned}$	$1.71(\mathrm{~s}, \mathrm{CMe}), 2.08(\mathrm{~s}, 2 \times \mathrm{OAc}), 3.67\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.61(\mathrm{dd}$, $\left.J 2.3,4.2,2^{\prime}-\mathrm{H}\right), 4.97$ (t, $J 9.7,4^{\prime}-\mathrm{H}$), 5.19 (dd, $J 4.2,9.9,3^{\prime}-$ H), 5.48 (d, $J^{2.2,1} 1^{\prime}-\mathrm{H}$)
$9 b^{\text {e }}$	0.99	1.02	4.10	3.51		$\begin{aligned} & 1.29(\mathrm{~d}, \\ & J 6.6) \end{aligned}$	$\begin{aligned} & 1.19(\mathrm{~d}, \\ & J 6.0) \end{aligned}$	$\begin{aligned} & 1.70(\mathrm{~s}, \mathrm{CMe}), 2.08(\mathrm{~s}, 2 \times \mathrm{OAc}), 3.65\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.60(\mathrm{dd}, J \\ & \left.2.3,4.3,2^{\prime}-\mathrm{H}\right), 4.97\left(\mathrm{t}, J 9.7,4^{\prime}-\mathrm{H}\right), 5.18\left(\mathrm{dd}, J 4.3,9.8,3^{\prime}-\mathrm{H}\right), \\ & 5.47\left(\mathrm{~d}, J 2.2,1^{\prime}-\mathrm{H}\right) \end{aligned}$
12a	1.00	0.97	5.29	4.23		$\begin{aligned} & 1.26(\mathrm{~d}, \\ & J 6.5) \end{aligned}$		5.15 (br s, 15-H), 6.05 (d, J 8.2, 20-N H Acyl)
12b	1.00	0.90	5.29	4.18		$\begin{aligned} & 1.21(\mathrm{~d}, \\ & J 6.4) \end{aligned}$		5.18 (br s, 15-H), 6.01 (d, J 8.8, 20-N H Acyl)
13	0.97	0.87		4.71		$\begin{aligned} & 1.46(\mathrm{~d}, \\ & J 6.7) \end{aligned}$		$\begin{aligned} & 2.28(\mathrm{dd}, J 5.3,14.5,4 \beta-\mathrm{H}), 2.41(\mathrm{~m}, 17-\mathrm{H}), 2.59(\mathrm{~d}, J 14.2, \\ & 4 \alpha-\mathrm{H}) \end{aligned}$
14a	0.96	1.03	5.05	4.91		$\begin{aligned} & 1.57(\mathrm{~d}, \\ & J 6.4) \end{aligned}$		2.04 (s, 3-OAc)
14b	0.94	0.88	5.06	4.73		$\begin{aligned} & 1.49(\mathrm{~d}, \\ & J 6.7) \end{aligned}$		2.04 (s, 3-OAc), 2.42 (m, 16 $3-\mathrm{H}$)
15	0.96	1.15	5.15	3.37		$\begin{aligned} & 1.45(\mathrm{~d}, \\ & J 6.6) \end{aligned}$		2.05 (s, 3-OAc)
16	0.89	1.03	4.08				$\begin{aligned} & 1.35(\mathrm{~d} \\ & J 6.0) \end{aligned}$	$2.80(\mathrm{~m}, 17-\mathrm{H}), 4.23\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.81$ and 5.10 (each d, J_{AB} $\left.18.1,21-\mathrm{H}_{2}\right), 5.10\left(\mathrm{~d}, J 1.3,1^{\prime}-\mathrm{H}\right), 5.62\left(\mathrm{dd}, J 1.8,3.2,2^{\prime}-\mathrm{H}\right)$, 5.67 (t, J 9.9, 4'-H), 5.87 (dd, J 3.4, 10.2, $3^{\prime}-\mathrm{H}$), 5.88 (s, 22$\mathrm{H}), 7.23-8.12$ (Ph)
17	0.99	1.03	4.07			2.24 (s)	$\begin{aligned} & 1.34(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	2.91 (dd, $J 9.1,4.2,16 \beta-\mathrm{H}), 4.23$ (m, $\left.5^{\prime}-\mathrm{H}\right), 4.32$ (s, 14-OH), 5.10 (d, J 1.3, 1'-H), 5.62 (dd, $\left.J 1.7,3.8,2^{\prime}-\mathrm{H}\right), 5.66(\mathrm{t}, J 9.9$, $4^{\prime}-\mathrm{H}$), 5.87 (dd, J 3.4, 10.1, $3^{\prime}-\mathrm{H}$), 7.23 - 8.12 (m, Ph)
18	1.04	1.21	4.07	3.86		$\begin{aligned} & 1.27(\mathrm{~d}, \\ & J 6.4) \end{aligned}$	$\begin{aligned} & 1.34(\mathrm{~d}, \\ & J 6.2) \end{aligned}$	$4.23\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 5.10\left(\mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 5.63\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right), 5.66(\mathrm{t}, J 9.9$, $4^{\prime}-\mathrm{H}$), 5.86 (dd, J 3.3, 10.1, $3^{\prime}-\mathrm{H}$), $7.23-8.12$ (m, Ph)
20	0.98	1.04	4.07			1.95 (s)	$\begin{aligned} & 1.35(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$2.40(\mathrm{~m}, 17-\mathrm{H}), 4.24\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 5.10\left(\mathrm{~d}, J 1.3,1^{\prime}-\mathrm{H}\right), 5.63(\mathrm{dd}$, $\left.J 1.5,3.3,2^{\prime}-\mathrm{H}\right), 5.66\left(\mathrm{t}, J 9.9,4^{\prime}-\mathrm{H}\right), 5.87$ (dd, J 3.4, 10.1, $3^{\prime}-$ H), $9.04(\mathrm{br} \mathrm{s},=\mathrm{NOH}), 7.23-8.12(\mathrm{Ph})$
21a	0.96	1.03	3.94	4.91		$\begin{aligned} & 1.57(\mathrm{~d}, \\ & J 6.4) \end{aligned}$	$\begin{aligned} & 1.19(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$1.99,2.05,2.15(3 \mathrm{~s}, 3 \times \mathrm{OAc}), 3.91\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.80(\mathrm{~d}, J 1.5$, $\left.1^{\prime}-\mathrm{H}\right), 5.05$ (t, J 9.9, 4'-H), 5.19 (dd, J 1.7, 3.4, 2'-H), 5.32 (dd, J 3.4, 10.0, $3^{\prime}-\mathrm{H}$)
21b	0.94	0.88	3.94	4.73		$\begin{aligned} & 1.49(\mathrm{~d}, \\ & J 6.7) \end{aligned}$	$\begin{aligned} & 1.19(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$1.98,2.05,2.14(3 \mathrm{~s}, 3 \times \mathrm{OAc}), 2.42(\mathrm{~m}, 17-\mathrm{H}), 3.92\left(\mathrm{~m}, 5^{\prime}-\right.$ H), 4.80 (d, $\left.J 1.5,1^{\prime}-\mathrm{H}\right), 5.05\left(\mathrm{t}, J 9.9,4^{\prime}-\mathrm{H}\right), 5.18$ (dd, $J 1.7$, $3.4,2^{\prime}-\mathrm{H}$), 5.32 (dd, $\left.J 3.4,10.0,3^{\prime}-\mathrm{H}\right)$
22a	0.97	0.94	3.93	3.32		$\begin{aligned} & 1.22(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 1.17(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	1.97, 2.03, 2.13 ($3 \mathrm{~s}, 3 \times \mathrm{OAc}$), $3.88\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.79$ (br s, $1^{\prime}-$ H), 5.03 (t, J9.9, $4^{\prime}-\mathrm{H}$), 5.19 (dd, $\left.J 1.5,3.1,2^{\prime}-\mathrm{H}\right), 5.32$ (dd, J 3.4, 10.1, $3^{\prime}-\mathrm{H}$)
22b	0.97	1.14	3.95	3.28		$\begin{aligned} & 1.42(\mathrm{~d}, \\ & J 7.1) \end{aligned}$	$\begin{aligned} & 1.19(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$1.98,2.05,2.13(3 \mathrm{~s}, 3 \times \mathrm{OAc}), 3.90\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 4.81(\mathrm{~d}, J 1.2$, $1^{\prime}-\mathrm{H}$), $5.05\left(\mathrm{t}, J 9.9,4^{\prime}-\mathrm{H}\right), 5.21\left(\mathrm{dd}, J 1.6,3.3,2^{\prime}-\mathrm{H}\right), 5.33$ (dd, $J 3.5,10.0,3^{\prime}-\mathrm{H}$)
$23 a^{e}$	0.97	0.98	3.94	3.47		$\begin{aligned} & 1.23(\mathrm{~d}, \\ & J 6.1) \end{aligned}$	$\begin{aligned} & 1.22(\mathrm{~d}, \\ & J 6.1) \end{aligned}$	$\begin{aligned} & 3.36\left(\mathrm{t}, J 9.4,4^{\prime}-\mathrm{H}\right), 3.64\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.77\left(\mathrm{~d}, 2^{\prime}-\mathrm{H}\right), 3.68(\mathrm{dd}, J \\ & \left.3.2,9.4,3^{\prime}-\mathrm{H}\right), 4.78\left(\mathrm{br} \mathrm{~s}, 1^{\prime}-\mathrm{H}\right) \end{aligned}$
$23 b^{\text {e }}$	0.95	1.05	3.93	3.43		$\begin{aligned} & 1.34(\mathrm{~d}, \\ & J 6.6) \end{aligned}$	$\begin{aligned} & 1.22(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 3.36\left(\mathrm{t}, J^{\prime} 9.5,4^{\prime}-\mathrm{H}\right), 3.63\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.68\left(\mathrm{~d}, J 3.4,9.4,3^{\prime}-\mathrm{H}\right), \\ & 3.76\left(\mathrm{dd}, J 1.7,3.4,2^{\prime}-\mathrm{H}\right), 4.75\left(\mathrm{~d}, J 1.7,1^{\prime}-\mathrm{H}\right) \end{aligned}$

Table 1 (continued)

Compd.	$10-\mathrm{Me}$	13-Me	$3-\mathrm{H}^{\text {b }}$	$20-\mathrm{H}^{\text {c }}$	20-NHCOMe	$20-\mathrm{Me}$	5'-Me	Others
$24 a^{f}$	0.86	0.91	3.79	4.85		$\begin{aligned} & 1.49(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 1.09(\mathrm{~d}, \\ & J 6.2) \end{aligned}$	3.16 (t, J9.3, 4'-H), 3.54 (m, $\left.3^{\prime}-\mathrm{H}\right), 4.60$ (s, 1'-H)
$24 b^{f}$	0.84	0.73	3.80	4.43		$\begin{aligned} & 1.41(\mathrm{~d}, \\ & J 6.6) \end{aligned}$	$\begin{aligned} & 1.09(\mathrm{~d}, \\ & J 6.2) \end{aligned}$	$\begin{aligned} & 2.03(\mathrm{~m}, 17-\mathrm{H}), 3.08\left(\mathrm{t}, J^{\prime} 9.3,4^{\prime}-\mathrm{H}\right), 3.32\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.39(\mathrm{dd}, \\ & \left.J 3.3,9.2,3^{\prime}-\mathrm{H}\right), 3.50\left(\mathrm{dd}, J 1.8,3.2,2^{\prime}-\mathrm{H}\right), 4.47\left(\mathrm{~s}, 1^{\prime}-\mathrm{H}\right) \end{aligned}$
25a	0.96	1.02	5.06	4.02		$\begin{aligned} & 1.10(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		2.03 (s, 3-OAc)
25b	0.97	1.19	5.07	3.85		$\begin{aligned} & 1.26(\mathrm{~d}, \\ & J 6.6) \end{aligned}$		2.04 (s, 3-OAc)
25c	0.97	0.89	5.08	4.99		$\begin{aligned} & 1.23(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		2.05 (s, 3-OAc), 2.08 (s, 20-OAc)
25d	0.95	0.95	5.07	4.93		$\begin{aligned} & 1.18(\mathrm{~d}, \\ & J 6.1) \end{aligned}$		2.01 (s, 20-OAc), 2.04 (s, 3-OAc)
26a	0.91	0.98	5.05	3.88		$\begin{aligned} & 1.24(\mathrm{~d}, \\ & J 6.0) \end{aligned}$		2.04 (s, 3-OAc), 5.18 (s, 15-H)
26b	0.98	1.02	5.05	3.92		$\begin{aligned} & 1.18(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		2.04 (s, 3-OAc), 5.31 (s, 15-H)
27a	0.96	1.03	4.11	4.02		$\begin{aligned} & 1.10(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		
28a	0.98	0.96	5.06	4.13		$\begin{aligned} & 1.15(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		0.14 (s, SiMe_{2}), 0.91 ($\mathrm{s}, \mathrm{CMe}_{3}$), 2.04 ($\left.\mathrm{s}, 3-\mathrm{OAc}\right)$
29	0.97	0.94	4.11	4.08		$\begin{aligned} & 1.12(\mathrm{~d}, \\ & J 6.3) \end{aligned}$		0.12 (s, SiMe_{2}), $0.89\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$
30a ${ }^{\text {d }}$	0.93	1.01	3.93	3.98		$\begin{aligned} & 1.08(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 1.26(\mathrm{~d}, \\ & J 6.0) \end{aligned}$	$\begin{aligned} & 3.34\left(\mathrm{t}, J 9.4,4^{\prime}-\mathrm{H}\right), 3.66\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.74\left(\mathrm{dd}, J 3.8,9.5,3^{\prime}-\mathrm{H}\right), \\ & 3.83\left(\mathrm{q}, J 1.6,3.3,2^{\prime}-\mathrm{H}\right), 4.80\left(\mathrm{~d}, J 1.3,1^{\prime}-\mathrm{H}\right) \end{aligned}$
30b ${ }^{\text {d }}$	0.98	1.01	3.95	4.17		$\begin{aligned} & 1.18(\mathrm{~d}, \\ & J 6.6) \end{aligned}$	$\begin{aligned} & 1.27(\mathrm{~d}, \\ & J 6.3) \end{aligned}$	$\begin{aligned} & 0.16,0.17\left(2 \mathrm{~s}, \mathrm{SiMe}_{2}\right), 0.93\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 3.38\left(\mathrm{t}, J 10.9,4^{\prime}-\mathrm{H}\right) \text {, } \\ & 3.67\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}\right), 3.74\left(\mathrm{dd}, J 3.3,9.4,3^{\prime}-\mathrm{H}\right), 3.81(\mathrm{dd}, J 1.7,3.2 \\ & \left.2^{\prime}-\mathrm{H}\right), 4.80\left(\mathrm{~m}, \mathrm{l}^{\prime}-\mathrm{H}\right) \end{aligned}$
$32^{\text {d.g }}$	0.94	0.93	4.04			1.93		2.45 (dd, J 5.0, 9.0, 17-H)
$33^{\text {d.g. } h}$	0.95	0.95	4.04	$\sim 3.45^{\text {i }}$		~ 1.25 (m) ${ }^{j}$		
$34^{\text {d.g }}$	0.94	0.89	4.04			1.86		2.47 (dd, J 5.0, 9.0, 17-H)
$35^{\text {d. }}$ g	0.95	0.94	4.04			1.99		2.52 (dd, J 4.5, 9.0, 17-H)
$36 \mathbf{a}^{\text {d,g }}$	0.95	1.03	$\sim 4.04^{i}$	$4.85{ }^{\text {i }}$		$\begin{aligned} & 1.58(\mathrm{~d}, \\ & J 6.4) \end{aligned}$		
$\mathbf{3 6 b}{ }^{\text {d.g }}$	0.93	0.87	$\sim 4.04^{i}$	$\sim 4.45^{i}$		$\begin{aligned} & 1.49(\mathrm{~d}, \\ & J 6.7) \end{aligned}$		2.39 (dd, J9.0, 18.0, 16 β-H)

${ }^{a}$ For solutions in $\mathrm{CDCl}_{3}\left(\mathrm{SiMe}_{4}\right.$ internal standard) unless otherwise indicated on a Bruker AM 300 instrument. ${ }^{b}$ Broad singlet. ${ }^{c}$ Multiplet. ${ }^{d}$ In $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}(1: 1) .{ }^{e} \mathrm{In} \mathrm{CD}_{3} \mathrm{OD} .{ }^{f} \mathrm{In}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} .{ }^{9}$ Trisdigitoxoside spectra 32-36a, 36b are in agreement with data reported in ref. 3. ${ }^{h} \mathrm{Major}$ isomer. ${ }^{i}$ Obscured by trisdigitoxoside, see ref. 3. ${ }^{j}$ Obscured by $6^{\prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}-\mathrm{H}_{3}$ signals.
measurements, such as those from the C-20 methyl to $16 \beta-\mathrm{H}$ or from $20-\mathrm{H}$ to $17-\mathrm{H}$, were occasionally observed and were consistent with the proposed stereochemistries and conformations. When necessary, identification of the protons involved was accomplished with standard two-dimensional NMR techniques (COSY) ${ }^{20}$ and inverse $\mathrm{C}-\mathrm{H}$ correlation. ${ }^{25}$ For some compounds the NOEs were measured in a reciprocal fashion by irradiating, for example, both C-20 and C-13 methyls in turn and observing the enhancement of the other methyl. In other cases measurement from both methyls was not possible owing to overlap of one of the methyl groups with other resonances. In all cases interpretation of the NOE results was done by comparing data from both epimers. Complete coupling constant and NOE data, together with a detailed description of the techniques involved, will be published separately. ${ }^{23}$

Receptor Binding.- $14 \beta, 20 \beta$-Dihydroxy- $5 \beta, 14 \beta$-pregnan- 3β yl α-L-rhamnopyranoside 19 binds strongly to the cardiac glycoside recognition site of heart muscle ${ }^{15}$ (see Table 4) whereas the 20α-epimer 30 a binds less well. Comparison of the $20 x$ - and 20β-acetamido $8 \mathbf{a}$ and $8 \mathbf{b}$, the 20α - and 20β-amino 23a and 23b and the $20 x$ - and 20β-nitro 24a and 24b pairs shows a similar relationship. Restricted rotation around the C-17-C-20 bond limits the space in which the polar group is projected from the steroid skeleton. The stereochemistry appears to be more favourable in the 20β than in the $20 x$ derivatives. The $20 x$ - and 20β-amino compounds can interact through donor and acceptor hydrogen bonding to the active site in an analogous manner to the alcohols. Unlike the alcohols and amines the $20 x$-and 20β nitro derivatives cannot form donor hydrogen bonds, indicating
that an acceptor bond is formed with a hydrogen atom of the enzyme. Owing to their different spacial requirements potent binding of these groups most likely occurs with receptor groups different from those interacting with the unsaturated lactone in the cardiac glycosides. Clearly a planar conjugated π-bonded structure is not required for highly potent binding to occur.

While the genin derivatives are very much less potent than the glycosides the relationship of greater potency for the 20β over 20α derivatives remains the same, e.g. the 20β-acetamido- $5 a$ over the $20 x$-acetamido- $4 a$, the 20β-nitro- $14 b$ over the 20α nitro 14a, and the 20β-alcohol 25b over the 20α-alcohol 25a derivatives. Little difference is observed between the 20α - and 20β-acetamido 3β-acetates 4 a and 5 a and the corresponding 3β-alcohols $\mathbf{4 b}$ and 5 b. The C-3 ketone 13 binds only weakly.

We have shown that the trisdigitoxoside is less potent than the rhamnoside for the 20β-alcohol 19^{15} and this relationship apparently holds for the amino and nitro derivatives 33 and 36 also. Pregnane derivatives of this type, unlike the corresponding cardenolides, show K^{+}-sparing diuresis, a desirable property for cardiotonic substances as it increases their margin of safety. ${ }^{26}$ Other C-20 groups tested in the RBA which showed moderately strong receptor-binding potency were the oxime 32 , the hydrazone 34 and the amidinohydrazone 35. C-20 Amidinohydrazone genin derivatives have been shown to possess cardiotonic properties. ${ }^{27}$

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, except for compounds $\mathbf{1 0 a}, 10 \mathrm{~b}$ and 11, are reported in Tables 1 and 2. J-Values are given in Hz .
Table $2{ }^{13} \mathrm{C}$ chemical shifts ${ }^{a}$

Table 2 (continued)

Carbon	Compounds													
	$8 \mathrm{a}^{\text {c }}$	8b ${ }^{\text {c }}$	9a ${ }^{\text {b.d.e }}$	$12 a^{f}$	$12 b^{f}$	13	$14 a^{e}$	$14 b^{e}$	15	$16^{\text {g.h }}$	17^{9}	$18^{\text {c. }}$ g	20^{g}	$21 a^{i}$
1	$30.00^{\text {m }}$	30.03^{m}	$32.24{ }^{\text {m }}$	30.02^{m}	$30.02^{\text {m }}$	37.13	30.51	30.49	$30.48{ }^{\text {m }}$	30.42	30.55	30.59	30.57	30.31
2	27.04	27.13	27.72	24.78	24.77	36.71	25.08	25.10	25.05	26.44	26.51 ${ }^{\text {m }}$	$26.33{ }^{\text {m }}$	$26.51{ }^{\text {m }}$	26.51
3	72.55	72.55	69.80	76.23	76.24	213.00	70.42	70.43	74.47	73.20	73.36	73.43	73.45	72.88
4	$30.76{ }^{\text {m }}$	$30.77{ }^{\text {m }}$	$31.42{ }^{\text {m }}$	$30.08^{\text {m }}$	$30.08^{\text {m }}$	42.13	30.51	30.49	$30.53{ }^{\text {m }}$	29.60	29.67	29.71	29.67	29.48
5	37.17	37.16	36.90	36.91	36.91	43.71	36.90	36.88	36.96	36.37	36.58	36.60	36.59	36.34
6	26.76	26.83	27.94	25.81	25.82	26.60	26.42	26.46	26.45	26.51	26.60^{m}	$26.56^{\text {m }}$	$26.67{ }^{\text {m }}$	26.37
7	21.35^{n}	$21.19{ }^{\text {n }}$	22.40	23.73	23.74	$20.79{ }^{\text {m }}$	20.62	20.72	$20.45{ }^{\text {n }}$	21.20^{m}	$21.59{ }^{n}$	$21.52^{\text {n }}$	21.18^{n}	20.59
8	41.13	41.39	42.04	39.55	39.63	41.26	41.19	41.52	40.39	41.79	40.02	40.82	40.13	41.14
9	36.06	36.12	38.02	34.96	34.85	36.64	35.53	35.73	35.51	35.74	35.33	35.78	35.41	35.54
10	35.54	35.57	36.21	34.45	34.98	35.24	35.22	35.22	35.18	35.26	35.28	33.38	35.28	35.21
11	$21.71{ }^{\text {n }}$	$21.6{ }^{\text {n }}$	22.51	21.94	21.69	$20.98{ }^{\text {m }}$	21.14	21.28	$21.33{ }^{\text {n }}$	$21.37{ }^{\text {m }}$	$20.94{ }^{n}$	$20.68{ }^{\text {n }}$	$21.39^{\text {n }}$	21.17
12	41.50	42.38	42.30	42.27	41.85	40.02	40.61	40.21	40.78	40.03	39.40	41.72	39.72	40.62
13	47.50	47.46	49.85	47.07	46.78	47.23	47.26	47.21	48.22	49.59	49.36	47.72	49.01	47.18
14	85.67	86.07	86.52	154.82	154.83	85.86	86.09	86.15	85.03	85.49	84.96	85.64	85.88	86.11
15	31.50	31.57	33.31	116.60	116.56	31.42	32.16	31.43	31.94	33.14	33.98	32.19	33.82	32.06
16	21.79	26.19	22.65	34.91	34.10	24.56	24.79	24.59	25.74	26.86	24.94	$26.94{ }^{\text {m }}$	27.56	24.85
17	54.66	55.02	55.62	58.20	58.19	51.98	54.38	52.06	54.39	50.93	62.42	56.77	56.87	54.30
18	13.98	15.99	14.68	17.35	16.92	13.70	16.02	13.69	16.31	15.76	15.40	16.39	15.52	16.00
19	23.70	23.83	23.21	23.38	23.38	22.57	23.76	23.74	23.74	23.75	23.88	23.92	23.94	23.70
20	47.01	49.46	47.90	27.61	47.90	88.76	87.71	86.80	51.10	174.52	217.68	71.94	162.75	87.75
21	18.73	19.90	20.69	20.74	21.12	20.34	21.26	20.34	21.50	73.42	33.36	23.37	17.70	21.20
1^{\prime}	98.79	98.72	98.49							95.78	95.77	95.84	95.81	95.60
2	71.69	71.73	77.88							70.14	71.57	71.63	71.58	70.54
3	71.95	71.91	72.16							71.53	70.17	70.25	70.21	69.29
4^{\prime}	72.23	73.26	71.98							71.95	72.04	72.09	72.06	71.29
5	69.02	69.96	70.13							66.91	66.88	66.94	66.87	66.50
$6{ }^{\prime}$	17.29	17.39	17.78							17.67	17.70	17.75	14.47	17.40
OCOMe							21.53	21.53						20.73
ОСОМе														20.82
OCOMe														20.98
OCOMe														
OCOMe							170.65	170.67						169.61
OCOMe														170.01
OCOMe														170.24
NHCOMe	22.67	22.50	24.29											
NHCOMe	172.9	171.17	173.15											

Table 2 (coninued)

Carbon	Compounds														
	$21^{\text {b.i }}$	$22 a^{\text {i }}$	$22 b^{\text {i }}$	23a ${ }^{\text {b.e. }}$	$23 b^{\text {b.e. }}$	$24 a^{\text {i }}$	$24 b^{\text {j }}$	25a	25b	25c	25d	26a	26b	27a	28a
1	$30.30^{\text {m }}$	30.40^{m}	30.41^{m}	31.61	31.83	$30.80^{\text {m }}$	$30.66^{\text {m }}$	$30.52^{\text {m }}$	30.52	30.55	30.49	$30.51{ }^{\text {m }}$	$30.54{ }^{\text {m }}$	29.43	${ }^{30.63}{ }^{\text {m }}$
2	26.55"	26.37 ${ }^{\text {n }}$	36.39 ${ }^{7}$	27.47	27.52	$26.47{ }^{\text {n }}$	$26.48{ }^{\prime \prime}$	25.03	25.05	25.10	25.08	25.07	25.12	27.31	25.17
3	73.07	73.10	73.06	73.59	73.60	72.05	72.04	70.52	70.53	70.54	70.48	70.65	70.68	66.35	70.75
4	$29.57{ }^{\text {m }}$	29.52m	$29.53{ }^{\text {m }}$	30.93	30.86	$30.30^{\text {m }}$	30.32^{m}	$30.46{ }^{\text {m }}$	30.52	30.55	30.49	$30.43^{\text {m }}$	$30.44^{\text {m }}$	32.86	$30.71^{\text {m }}$
5	36.33	36.48	36.48	38.05	38.14	36.40	36.42	36.91	36.94	36.97	36.90	37.20	37.23	35.84	37.10
6	$26.37{ }^{\prime \prime}$	$26.54{ }^{\text {" }}$	${ }^{26.62}{ }^{\text {n }}$	27.71	27.90	26.05^{n}	${ }^{26.06 "}$	26.36	26.25	26.43	26.48	26.14	26.15	26.34	26.52
7	20.69°	19.12	20.47	21.95	22.07	20.23	$20.38{ }^{\circ}$	$21.25{ }^{\prime \prime}$	20.54^{m}	$21.51{ }^{\text {m }}$	21.30^{m}	23.92	23.95	20.65	21.22
8	41.49	40.43	40.32	41.83	42.29	$\sim 40^{p}$	$\sim 40^{p}$	40.58	40.67	39.81	41.52	39.68	39.78	40.07	39.81
9	35.75	35.42	35.43	36.88	36.88	34.67	34.74	35.46	35.55	35.23	35.69	34.77	34.97	35.07	35.24
10	35.20	35.18	35.24	36.33	36.38	34.85	34.85	35.13	35.18	35.23	35.19	35.06	35.09	35.07	35.28
11	21.33°	21.32	21.17	22.27	22.53	20.89	20.89°	$21.47^{\prime \prime}$	$21.32^{\text {m }}$	${ }^{21.07}{ }^{\text {m }}$	$20.80^{\text {m }}$	21.61	21.82	20.98	21.48
12	40.23	39.80	40.98	40.42	42.54	39.50	39.51	39.98	41.55	41.19	41.67	41.69	42.80	39.63	41.07
13	47.16	47.97	48.24	$\sim 50^{\text {P }}$	$\sim 50^{p}$	46.79	46.95	47.58	47.64	47.27	46.67	46.41	47.29	47.41	47.29
14	86.11	84.19	84.89	86.35	86.23	84.34	84.15	84.78	85.42	84.42	85.73	154.81	155.51	84.47	83.48
15	31.39	32.47	32.00	32.95	32.49	29.42	29.43	32.52	32.13	32.12	31.72	116.79	116.29	31.95	32.54
16	24.52	$26.54{ }^{\text {n }}$	25.96	20.02	23.59	25.00	23.80	18.09	26.47	20.26	25.08	33.56	33.72	17.80	18.78
17	52.03	55.22	54.84	55.63	54.95	53.70	51.90	56.20	56.61	54.14	54.31	${ }^{60.38}$	58.69	55.84	57.32
18	13.64	15.22	16.42	15.40	15.94	16.06	14.01	14.88	16.31	14.56	15.15	17.33	17.55	14.44	15.02
19	23.70	23.78	23.77	24.31	24.37	23.77	23.80	23.75	23.76	23.79	23.75	$23.63^{\text {n }}$	23.77^{n}	23.43	$23.91^{\prime \prime}$
20	86.72	45.85	51.04	47.74	51.24	88.17	86.72	${ }^{65.59}$	71.89	71.58	74.28	${ }^{69.18}$	69.49	65.05	${ }^{68.66}$
21	20.24	22.02	20.63	19.85	17.32	20.89	19.93	22.04	23.32	18.92	19.29	$23.55{ }^{n}$	$23.58{ }^{\prime \prime}$	21.32	$23.33^{\prime \prime}$
1^{\prime}	95.70	95.63	95.64	99.84	99.85	98.24	98.27								
2	70.56	70.53	70.56	72.91	72.93	70.79	70.78								
3^{\prime}	69.29	69.30	69.34	72.63	72.54	71.09	71.11								
4^{\prime}	71.28	71.34	71.35	74.13	74.08	71.15	71.17								
5^{\prime}	66.51	66.41	66.46	69.97	70.01	68.60	68.63								
6^{\prime}	17.40	17.37	17.41	17.92	17.92	17.86	17.89								
ОСОме	20.75							21.47	21.49	21.51	21.50	21.50	21.52		21.56
осоме	20.82									21.44	21.62				
осоме	20.98														
осоме	170.01							170.64	170.66	170.66	170.63	170.65	170.65		170.70
Oсоме	170.25									169.56	170.38				
OCOMe NHCOMe	170.25														
NHCOMe NHCOMe															

Table 2 (continued)

[^0]Table 3 NOE measurements as percentage enhancements ${ }^{a}$

Proton irradiated in 9a	Observed NOE									
	1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}	5^{\prime}	6^{\prime}	$\mathrm{O}_{3} \mathrm{CMe}$			
1^{\prime}		6	1.4	0	4	0	0			
2^{\prime}	9		6	0	0	0	0			
5^{\prime}	5	0	5	4		6	0			
$\mathrm{O}_{3} \mathrm{CMe}$	0.3	0.1	0	1.2	0					
in $\mathbf{1 1}$										
1^{\prime}		8	0.5	0	6	0	0			
2^{\prime}	11		13	0	0	0	0			
$\mathrm{O}_{3} \mathrm{CMe}$	0.6	0.3	0	2.6	0					

${ }^{a}$ For solutions in CDCl_{3} on a Bruker AM500 instrument.
Table 4 Potency of 14 -hydroxy- $5 \beta, 14 \beta$-pregnane derivatives in a $\left[{ }^{3} \mathrm{H}\right.$]ouabain radioligand binding assay (RBA) ${ }^{a}$

Compd.	Substituent			Inhibitory conc (IC SO_{5} / $\mathrm{nmol} \mathrm{dm}{ }^{-3}$)
	3β	20α	20β	
4 a	OAc	NHAc	H	14000
5a	OAc	H	NHAc	1100
4b	OH	NHAc	H	12600
5b	OH	H	NHAc	1500
14a	OAc	NO_{2}	H	424000
14b	OAc	H	NO_{2}	10200
25a	OAc	OH	H	41000
25b	OAc	H	OH	8000
13	carbonyl	H	NO_{2}	10000
8a	x-L-rhamnoside	NHAc	H	1800
8 b	x-L-rhamnoside	H	NHAc	450
30a	$x-L-$ rhamnoside	OH	H	1600
19	x-L-rhamnoside	H	OH	75
23a	x-L-rhamnoside	NH_{2}	H	115
23b	$x-L-$ rhamnoside	H	NH_{2}	72
24a	$x-L$-rhamnoside	NO_{2}	H	940
24b	$x-L-$ rhamnoside	H	NO_{2}	45
32	tris- β-D-digitoxoside	trans	- OH	1300
$33^{\text {b }}$	tris- β-D-digitoxoside	20ξ -		300
$36^{\text {b }}$	tris- β-D-digitoxoside	20ξ -		450
34	tris- β-D-digitoxoside	= $\mathrm{N} N$		5200
35	tris- β-D-digitoxoside	$=\mathrm{NN}$	NH) NH_{2}	200

${ }^{\text {a }} \mathrm{IC}_{50}$ represents the concentration that inhibits binding of [${ }^{3} \mathrm{H}$]ouabain by 50% and is obtained from a complete concentration/inhibition curve. Digitoxigenin and digitoxin give values of 20 and $8 \mathrm{nmol} \mathrm{dm}{ }^{-3}$, respectively. ${ }^{b}$ Approximately $1: 1$ (20x:20ß).

TLC was carried out in the following solvent systems on silica gel (Merck type 60 H): acetone-diethyl ether, ethyl acetate-light petroleum ($35-60^{\circ} \mathrm{C}$), or methanol-methylene dichloride mixtures (genins); methanol-methylene dichloride (glycosides); and chloroform-methanol-diethylamine (100:10:0.75) (C-20 amines), and compounds were visualized by dipping of the plates in 5% sulfuric acid-ethanol followed by heating at $120^{\circ} \mathrm{C}$. Flash chromatography was carried out on silica gel (Merck type 60 for column chromatography) unless otherwise stated. M.p.s were measured on a Kofler hot-stage apparatus and are uncorrected. Elemental analyses were performed by Mr. W. Baldeo, School of Pharmacy, University of London, England.
3β-Acetoxy-14-hydroxy-5 $\beta, 14 \beta$-pregnan- 20 -one trans-Oxime 2a.-A solution of the 20 -ketone 1a (210 mg), prepared as reported in ref. 3, in 95% ethanol ($9 \mathrm{~cm}^{3}$)-pyridine ($1.5 \mathrm{~cm}^{3}$) was refluxed with hydroxylamine hydrochloride (210 mg) for 2 h and diluted with ice-water $\left(100 \mathrm{~cm}^{3}\right)$. The precipitate was filtered off to give the trans-oxime $\mathbf{2 a}(170 \mathrm{mg})$, m.p. $233-236^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: $\mathrm{C}, 70.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 3.35 . \mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{4}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 9.5 ; \mathrm{N}, 3.6 \%)$.

3阝,14-Dihydroxy-5 $5,14 \beta$-pregnan-20-one trans 2b and cisOxime 2c.-Following the procedure described above the 20ketone $1 \mathrm{lb}(550 \mathrm{mg}$) gave the 20 -oximes, which were separated by flash chromatography. Elution (70% ethyl acetate-light petroleum) gave the trans-20-oxime 2 b (528 mg), m.p. $124-126^{\circ} \mathrm{C}$ (from methylene dichloride-iight petroleum) (Found: C, $72.1 ; \mathrm{H}$, $10.0 ; \mathrm{N}, 4.0 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.4 ; \mathrm{H}, 9.8 ; \mathrm{N}, 4.0 \%$). Further elution gave the cis-20-oxime 2c (31 mg), m.p. 170 $172^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 70.8; H, 10.0; $\mathrm{N}, 3.4 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 9.9 ; \mathrm{N}, 3.9 \%$).
20α-Amino- 3a and 20 β-Amino- $5 \beta, 14 \beta$-pregnane- $3 \beta, 14$-diol Hydrochloride $\mathbf{3 b}$.-A solution of the 20 -oxime $\mathbf{2 b}(300 \mathrm{mg})$ in abs. ethanol ($25 \mathrm{~cm}^{3}$) containing chloroform ($0.5 \mathrm{~cm}^{3}$) was hydrogenated over $\mathrm{PtO}_{2}(125 \mathrm{mg})$ at 3 atm for 2 days until no starting material remained (TLC). The PtO_{2} was filtered off and the filtrate was evaporated to give the $20 x$-amine -HCl 3 a (18 mg), m.p. $258-260^{\circ} \mathrm{C}$ (decomp.) (from MeOH). The residue from the mother liquor was separated by flash chromatography by elution $\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}(132: 12: 0.9)\right]$ to give the 20β-amine• $\mathrm{HCl} 3 \mathrm{bb}\left(130 \mathrm{mg}\right.$), m.p. $272-274{ }^{\circ} \mathrm{C}$ (from methylene dichloride-light petroleum) (Found: C, 67.75; H, 10.3; N, 3.8; Cl, 9.6. $\mathrm{C}_{21} \mathrm{H}_{3}{ }_{7} \mathrm{NO}_{2} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 10.05 ; \mathrm{N}, 3.8 ; \mathrm{Cl}, 9.5 \%$).
20α-Acetamido- 4a and 20 2 -Acetamido-14-hydroxy- $5 \beta, 14 \beta$ -pregnan- $3 \beta-y l$ Acetate 5a and 20-trans-Acetoxyimino-14-hydroxy- $5 \beta, 14 \beta$-pregnan- $3 \beta-y l$ Acetate 6.-The 20 -oxime 2b (400 mg) was hydrogenated as described above and the $20 \xi-$ amine products $3 \mathbf{a} / \mathbf{3 b}$ were treated with pyridine ($5 \mathrm{~cm}^{3}$) and acetic anhydride ($5 \mathrm{~cm}^{3}$) for 18 h at room temperature. Workup and flash chromatography gave, on elution [acetone-ethyl acetate-light petroleum ($40: 18: 42$)], the 20-oxime acetate 6 (24 mg), m.p. $161-163^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 69.1; H, 9.2; N, 3.1. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5}$ requires C, $69.25 ; \mathrm{H}, 9.05$; $\mathrm{N}, 3.2 \%$). Further elution gave the 20β-acetamide $5 \mathrm{a}(54 \mathrm{mg})$, m.p. $210-211.5^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 71.3; $\mathrm{H}, 10.1 ; \mathrm{N}, 3.0 . \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{4}$ requires C, 71.6; $\mathrm{H}, 9.85 ; \mathrm{N}$, 3.3%) and the 20α-acetamide 4 a (290 mg), m.p. $244-245.5^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 71.3; H, 9.9; N, 3.25%).
20α-Acetamido- 4b and 20β-Acetamido- $5 \beta, 14 \beta$-pregnane$3 \beta, 14$-diol $5 \mathbf{b}$.-The 20α-acetamide 4 a (80 mg) was dissolved in ethanol $\left(6 \mathrm{~cm}^{3}\right), 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. potassium hydroxide $\left(6 \mathrm{~cm}^{3}\right)$ was added, and the mixture was stirred overnight at room temperature. The mixture was acidified to pH 5 with glacial acetic acid, extracted with methylene dichloride and the combined extracts were washed successively with water and saturated aq. sodium hydrogen carbonate to give the $20 \alpha-$ acetamide diol $\mathbf{4 b}\left(34 \mathrm{mg}\right.$), m.p. $235-236^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 73.0; H, 10.2; N, 3.9. $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 10.4 ; \mathrm{N}, 3.7 \%$).

The 20β-acetamide $5 \mathrm{a}(564 \mathrm{mg})$ was hydrolysed as described above for compound $\mathbf{4 a}$, to give the diol $\mathbf{5 b}$ (354 mg), m.p. 239 $242{ }^{\circ} \mathrm{C}$ (from methylene dichloride-light petroleum) (Found: C, 73.1; H, 10.8; N, 3.4\%).

The preparation of epimers $\mathbf{4 b}$ and $\mathbf{5 b}$ was also carried out without separation of intermediates as follows: the 20-ketone 1a $(1.6 \mathrm{~g})$ was treated with hydroxylamine hydrochloride $(1.6 \mathrm{~g})$ as described above to give the crude oxime (m.p. $227-232^{\circ} \mathrm{C}$), which was refluxed in propan- $1-\mathrm{ol}\left(100 \mathrm{~cm}^{3}\right)$, and sodium (4 g) was added in portions during 2 h . The mixture was concentrated, diluted with water, and extracted with methylene dichloride to give the 20ξ-amine base of compounds $\mathbf{3 a} / \mathbf{b}$. The 20 -amines were treated with pyridine ($20 \mathrm{~cm}^{3}$) and acetic anhydride ($20 \mathrm{~cm}^{3}$) for 18 h to give the 20 -acetamides $4 \mathrm{a} / 5 \mathrm{a}$ $(3.2 \mathrm{~g})$, which were treated with $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. potassium hydroxide-abs. ethanol for 18 h and worked up as described
above to give a residue, which was separated by flash chromatography. Elution (50% acetone-light petroleum) gave the 20α-acetamide $4 \mathrm{~b}\left(553 \mathrm{mg}\right.$), m.p. $230-234^{\circ} \mathrm{C}$, and the 20β acetamide 5 b (601 mg), m.p. $235-240^{\circ} \mathrm{C}$.
20α-Acetamido- 7a and 20 2 -Acetamido-5 β-pregn-14-en-3 β ol 7b.-The 20α-acetamide $4 \mathrm{bb}(120 \mathrm{mg})$ and triphenylphosphine (208 mg) was dissolved in acetonitrile ($4 \mathrm{~cm}^{3}$), a few drops of carbon tetrachioride were added, and the mixture was left for 4 days at room temperature. TLC showed that some starting material still remained. The reaction mixture was evaporated and diluted with water, and the water phase was extracted with methylene dichloride to give a residue, which was separated by flash chromatography. Elution (5% methanol-methylene dichloride) gave (i) triphenylphosphine oxide (79 mg), m.p. 155$158{ }^{\circ} \mathrm{C}$ (from acetone-light petroleum) (lit., ${ }^{28} 156^{\circ} \mathrm{C}$); (ii) 14 -ene-20x-acetamide 7a (49 mg), m.p. 201-203 ${ }^{\circ} \mathrm{C}$ (from methanol-acetone-light petroleum) (Found: C, $76.5 ; \mathrm{H}, 10.4$; N, 4.15. $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires C, $76.8 ; \mathrm{H}, 10.4 ; \mathrm{N}, 3.9 \%$). Starting material $4 \mathrm{a}\left(16 \mathrm{mg}\right.$), m.p. $195-200^{\circ} \mathrm{C}$, was recovered.
When the 20β-acetamide $5 \mathrm{a}(50 \mathrm{mg}$) was treated with 0.5 mol dm^{-3} aq. potassium hydroxide-ethanol as described above for compound $\mathbf{5 b}$ and 5% hydrochloric acid was used instead of acetic acid for neutralization, the dehydration product, 20 β -acetamide-14-ene 7b (21 mg), m.p. 245-247 ${ }^{\circ} \mathrm{C}$ (from acetonelight petroleum) was obtained (Found: C, 76.6; H, 10.6; N, 3.8%).
20α-Acetamido- 8a and 20 β-Acetamido- 3β-(α-L-rhamnopyr-anosyloxy)-5 $\beta, 14 \beta$-pregnan-14-ol 8b.-(a) From compounds 4b and $\mathbf{5 b}$. The 20β-amide $\mathbf{5 b}(184 \mathrm{mg})$ was refluxed in acetonitrile ($30 \mathrm{~cm}^{3}$) until it was dissolved and the solution was then cooled to room temperature. Acetobromorhamnose, ${ }^{29.30}$ m.p. $65-$ $66^{\circ} \mathrm{C}$ (352 mg), and mercury(II) cyanide ${ }^{10}(252 \mathrm{mg})$ were added and the solution was stirred at room temperature for 1 h , when saturated aq. sodium hydrogen carbonate ($15 \mathrm{~cm}^{3}$) was added and the mixture was stirred for a further 50 min and then the aqueous phase was extracted with toluene. The combined toluene layers were washed with water and the residue obtained on evaporation was dissolved in $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{KOH}-$ ethanol and left overnight. Brine was added and the mixture was extracted with tetrahydrofuran (THF) and the residue obtained on evaporation was subjected to flash chromatography to give on elution (35% acetone-light petroleum) starting material 5b (76 mg), m.p. $235-240^{\circ} \mathrm{C}$ (from methylene dichloride-light petroleum) and 20β-acetamide rhamnoside $\mathbf{8 b}(20 \mathrm{mg})$, m.p. $267-$ $268^{\circ} \mathrm{C}$ (from methanol-acetone-light petroleum) (Found: C, $65.0 ; \mathrm{H}, 9.5 ; \mathrm{N}, 2.7 . \mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 9.5$; $\mathrm{N}, 2.6 \%$).

Following the same procedure the 20α-amide $\mathbf{4 b}$ (218 mg) gave starting material $\mathbf{4 b}(60 \mathrm{mg})$ and the 20α-acetamide rhamnoside 8a (25 mg), m.p. 294-296 ${ }^{\circ} \mathrm{C}$ (from methanol-acetone-light petroleum) (Found: C, 65.4; H, 9.4; N, 2.8\%).
(b) From compounds 22a and 22b (preparation given below). To a suspension of 20α-amino triacetate 22a (45 mg) in anhydrous diethyl ether ($5 \mathrm{~cm}^{3}$) were added 4-(dimethylamino)pyridine (DMAP) (5 mg) and acetic anhydride $\left(0.25 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 2 h until reaction was complete by TLC. Diethyl ether ($40 \mathrm{~cm}^{3}$) was added and the solution was washed with brine, evaporated, and the residue was dissolved in methanol ($10 \mathrm{~cm}^{3}$), 10% ammonia gas-methanol ($3 \mathrm{~cm}^{3}$) was added, and the mixture was stirred overnight. After evaporation the residue was recrystallized to give the 20α-acetamide rhamnoside 8a (8 mg), m.p. 292-295 ${ }^{\circ} \mathrm{C}$ (from methanol-acetone-hexane) (mixed m.p. 293-296 ${ }^{\circ} \mathrm{C}$), which was identical (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with that obtained from compound $\mathbf{4 b}$.
Similar treatment of 20β-amine triacetate $\mathbf{2 2 b}(45 \mathrm{mg})$ gave, from flash chromatography and elution [chloroform-methanol-
diethylamine ($100: 10: 0.75$)], compound $\mathbf{8 b}(9 \mathrm{mg}$), m.p. $263-$ $267{ }^{\circ} \mathrm{C}$ (from acetone-hexane), identical (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with that obtained from compound $\mathbf{5 b}$.

20 α-Acetamido- and 20α-Amino-14-hydroxy- $5 \beta, 14 \beta$-pregnan$3 \beta-y l$ 3,4-Di-O-acetyl- α-L-rhamnopyranose-1-C,2-C-diyl orthoacetates 9a and 9b, Tetra-O-acetyl- α-L-rhamnopyranose 10a, 2,3,4-Tri-O-acetyl- ξ-L-rhamnopyranose 10b, and 3,4-Diacetyl-α-L-rhamnopyranose-1-C,2-C-diyl 2,3,4-Tri-O-acetyl- β-Drhamnopyranosyl Orthoacetate 11.-To a vigorously stirred solution of the 20α-amide $\mathbf{4 b}(100 \mathrm{mg})$ and Fetizon's reagent (1.2 g) in methylene dichloride ($15 \mathrm{~cm}^{3}$) was added, in one portion, a solution of acetobromorhamnose ${ }^{29.30}(0.8 \mathrm{~g})$ in methylene dichloride $\left(10 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred for 0.5 h , the solid was removed by filtration through a Celite pad. The filtrate was washed with saturated aq. sodium hydrogen carbonate and flash chromatographed to give, on elution (50% diethyl ether-light petroleum), epimeric mixtures of tetra- O acetylrhamnose $10 \mathrm{a}(54 \mathrm{mg}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)(\alpha$-isomer) $1.22(\mathrm{~d}, J$ $\left.6.2,6-\mathrm{H}_{3}\right), 1.99,2.05,2.15$ and $2.16(4 \mathrm{~s}, 4 \times \mathrm{OAc}), 3.92(\mathrm{~m}, 5-\mathrm{H})$, 5.11 (t, $J 9.9,4-\mathrm{H}), 5.24$ (dd, $J 1.9$ and $3.5,2-\mathrm{H}), 5.30$ (dd, $J 3.5$ and $10.0,3-\mathrm{H})$ and $6.00(\mathrm{~d}, J 1.7,1-\mathrm{H}) ;(\beta$-isomer $) 1.29(\mathrm{~d}, J 6.2$, $\left.6-\mathrm{H}_{3}\right), 3.67(\mathrm{~m}, 5-\mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J} 1.1,1-\mathrm{H})$; and 2,3,4-tri-Oacetylrhamnopyranose $10 \mathrm{~b}(238 \mathrm{mg}),{ }^{30} \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)(\alpha$-isomer) $1.16\left(\mathrm{~d}, J 6.3,6-\mathrm{H}_{3}\right), 1.95,2.03$ and $2.11(3 \mathrm{~s}, 3 \times \mathrm{Ac}), 4.11(\mathrm{~m}$, $5-\mathrm{H}), 4.96(\mathrm{~m}, 4-\mathrm{H}), 5.02(\mathrm{~d}, J 1.8,1-\mathrm{H}), 5.19$ (dd, $J 1.9$ and $3.4,2-\mathrm{H}$) and 5.31 (dd, J 3.4 and $10.1,3-\mathrm{H}$); (β-isomer) 4.99 (s, 1 H).
Further elution (80% diethyl ether-light petroleum) gave the ortho ester 11 (102 mg), m.p. $161-164^{\circ} \mathrm{C}$ (from diethyl ethermethylene dichloride-light petroleum), $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22$ (d, J $5.7)$ and $1.24(\mathrm{~d}, J 5.4)\left(2 \times 6-\mathrm{H}_{3}\right), 1.74\left(\mathrm{~s}, \mathrm{O}_{3} \mathrm{CMe}\right), 1.97,2.04$, $2.05,2.11$ and $2.16(5 \times \mathrm{OAc}), 3.51(\mathrm{~m}, 2 \times 5-\mathrm{H}), 4.51(\mathrm{dd}, J 2.8$ and $3.6,2-\mathrm{H}), 4.93-5.14(\mathrm{~m}, 1-\mathrm{H}, 2 \times 3-\mathrm{H}$ and $2 \times 4-\mathrm{H})$ and $5.33(\mathrm{~d}, J 2.4,2-\mathrm{H})$ and $5.41(\mathrm{~d}, J 2.4)(1-\mathrm{H}) ; \delta_{\mathrm{c}} 17.41$ and 17.69 $(2 \times \mathrm{C}-6), 20.62,3 \times 20.78$ and $20.92(5 \times$ OCMe), 24.79 ($\mathrm{O}_{3} \mathrm{CMe}$), 69.51, 69.59, 69.93, 70.13, 70.24, 70.86 and 70.98 (C-2 and $2 \times \mathrm{C}-3,-4$ and -5), 75.67 (C-2 ortho ester), 91.71 and 97.43 $(2 \times \mathrm{C}-1), 134.74\left(\mathrm{O}_{3} \mathrm{CMe}\right)$ and $3 \times 169.75,170.05,170.31$ and $170.45(6 \times \mathrm{COMe})$ (Found: C, $51.6 ; \mathrm{H}, 6.3 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{15}$ requires $\mathrm{C}, 51.3 ; \mathrm{H}, 6.1 \%$).
Elution (2% methanol-methylene dichloride) gave the $20 \alpha-$ acetamido orthoacetate 9a (59 mg), m.p. $210-212^{\circ} \mathrm{C}$ (from methanol-diethyl ether) (Found: C, 64.5; H, 8.6; N, 2.1. $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{NO}_{10}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 8.5 ; \mathrm{N}, 2.2 \%$). The 20α-amino orthoacetate 9b (20 mg) was obtained as a non-crystalline gum.

20 α-12a and 20 β-Trifluoroacetmido-5 β-pregnan-14-en-3 $\beta-y l$ Trifluoroacetate 12b. To pyridine ($2 \mathrm{~cm}^{3}$) stirred under argon at $0{ }^{\circ} \mathrm{C}$ was added dropwise TFAA $\left(0.8 \mathrm{~cm}^{3}\right)$; the mixture showed $\mathrm{pH} 7-8$ (wet pH paper). A solution of the 20ξ-amines $\mathbf{3 a / b}$ (84 mg), prepared as described above, in pyridine ($1 \mathrm{~cm}^{3}$) was added dropwise and the mixture was stirred for 1 h until reaction was complete by TLC. Diethyl ether ($50 \mathrm{~cm}^{3}$) was added and the ether layer was washed successively with cold, saturated aq. sodium hydrogen carbonate and brine. The residue was separated by flash chromatography. Elution (10% diethyl ether-light petroleum) gave compound 12a (10 mg), m.p. 208$210^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: $\mathrm{C}, 58.8 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 2.6. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{NO}_{3}$ requires $\mathrm{C}, 58.9 ; \mathrm{H}, 6.5 ; \mathrm{N}, 2.8 \%$) and its isomer $\mathbf{1 2 b}^{2}$ (13 mg), m.p. $203-205^{\circ} \mathrm{C}$ (from diethyl etherhexane) (Found: C, $58.9 ; \mathrm{H}, 6.7$; N, 2.7%).

14-Hydroxy-20 - 14a and 20β-nitro- $5 \beta, 14 \beta$-pregnan- $3 \beta-y l$ Acetate 14b and 14-Hydroxy-203-nitro-5 $\beta, 14 \beta$-pregnan-3-one 13. $-0.1 \mathrm{Mol} \mathrm{dm}^{-3}$ dimethyldioxirane-acetone solution was prepared as described by Adams et al. ${ }^{31}$ To stirred dimethyl-
dioxirane-acetone solution ($20 \mathrm{~cm}^{3}$) was added a solution of the 20ξ-amine $3 \mathbf{a} / \mathrm{b}(300 \mathrm{mg})$ in methanol $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature and the mixture was left overnight. After evaporation the residue was treated with a mixture of pyridine ($1 \mathrm{~cm}^{3}$) and acetic anhydride ($1 \mathrm{~cm}^{3}$) overnight. After the usual work-up, the residue was separated by flash chromatography. Elution (40% diethyl ether-light petroleum) gave 20α-nitro compound 14 a (28 mg), m.p. $172-175^{\circ} \mathrm{C}$ (from acetone-diethyl ether-hexane) (Found: $\mathrm{C}, 67.8 ; \mathrm{H}, 9.1 ; \mathrm{N}, 3.6 . \mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{5}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 9.15 ; \mathrm{N}, 3.4 \%$).

Further elution gave isomer 14b (59 mg), m.p. 203-204 ${ }^{\circ} \mathrm{C}$ (from acetone-hexane) (Found: C, 67.9; H,9.2; N, 3.6\%) and the ketone 13 (11 mg), m.p. 167-169 ${ }^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: C, 69.3; H, 9.2; N, 4.0. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}, 9.15$; N, 3.85%).
20β-Amino-14-hydroxy- $5 \beta, 14 \beta$-pregnan- $3 \beta-y l$ Acetate 15 -Iron filings (250 mg) were washed with $4 \% \mathrm{HCl}$, the acid was decanted, and the powder was rinsed twice with water, twice with acetic acid, and acetic acid ($3 \mathrm{~cm}^{3}$) was added. To the stirred suspension was added a solution of 20β-nitro compound $14 b(60 \mathrm{mg})$ in acetic acid $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was brought to reflux under argon for 1.5 h until reduction was complete by TLC. The mixture was filtered, adjusted to $\mathrm{pH} 9-10(\mathrm{pH}$ paper) with 10% aq. NaOH , and extracted with ethyl acetate, and the extract was evaporated to give, after flash chromatography and elution [chloroform-methanol-diethylamine (100:10:0.75)], the title compound $15(24 \mathrm{mg})$ as a noncrystalline gum.

14-Hydroxy-3 β-(tri-O-benzoyl- α-L-rhamnopyranosyloxy)-

 $5 \beta, 14 \beta$-card-20(22)-enolide (Evomonoside α-L-Rhamnopyranoside Tribenzoate) 16 .-To a stirred solution of digitoxigenin ${ }^{3}$ $(374 \mathrm{mg})$ and tri- O-benzoyl- α-L-rhamnopyranosyl bromide ${ }^{32}$ $(1.08 \mathrm{~g})$ in ethylene dichloride $\left(25 \mathrm{~cm}^{3}\right)$ was added finely powdered mercury(II) cyanide ${ }^{10}$ (506 mg). After 3 h , during which time dry argon was bubbled through the mixture to remove hydrogen cyanide, the mixture was filtered through Celite and the filter was washed with methylene dichloride (100 cm^{3}). The combined filtrate was washed successively with 20% aq. KI, saturated aq. NaHCO_{3}, and water, and evaporated to give a residue, which was subjected to flash chromatography. Elution (35% ethyl acetate-light petroleum) gave the rhamnoside tribenzoate 16 (772 mg), m.p. $225-226{ }^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, 72.4; $\mathrm{H}, 6.9 . \mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{11}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 6.8 \%$).A similar reaction carried out on digitoxigenin (374 mg) as above with Fetizon's reagent gave compound 16 (204 mg) and digitoxigenin (256 mg recovery).

3 β-(Tri-O-benzyl- $\alpha-\mathrm{L}-$ rhamnopyranosyloxy)-5 $\beta, 14 \beta-$ preg-nane-14,20 - diol 18 and 14-Hydroxy- 3β-(tri-O-benzoyl- $\alpha-\mathrm{L}$ -rhamnopyraosyloxy)-5 $3,14 \beta$-pregnan-20-one 17.-A solution of evomonoside tribenzoate $16(350 \mathrm{mg})$ in methylene dichloride $\left(50 \mathrm{~cm}^{3}\right)$ was cooled to $-60^{\circ} \mathrm{C}$ in a solid CO_{2}-acetone-bath. A stream of ozone was passed into the solution until reaction was complete by TLC ($c a .1 \mathrm{~h}$) and excess of ozone was removed by a stream of nitrogen. Zinc $(2.5 \mathrm{~g})$ and acetic acid $\left(10 \mathrm{~cm}^{3}\right)$ were added and the mixture was brought to room temperature. The solvent was removed under reduced pressure at $40^{\circ} \mathrm{C}$ and the residue was dissolved in acetic acid $\left(20 \mathrm{~cm}^{3}\right)$; zinc powder $(3.5 \mathrm{~g})$ was added and the mixture was shaken overnight, filtered, and washed with methylene dichloride. The filtrate was washed successively with water and saturated aq. sodium hydrogen carbonate to give, after flash chromatography and elution $(40 \%$ acetone-hexane), the 20-ketone 17 (228 mg), m.p. $198-202^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: $\mathrm{C}, 72.7 ; \mathrm{H}, 7.2 . \mathrm{C}_{48} \mathrm{H}_{56} \mathrm{O}_{11}$ requires $\mathrm{C}, 72.7$; $\mathrm{H}, 7.1$).

Further elution gave the 20β-alcohol $18(61 \mathrm{mg})$ as a noncrystalline gum.
$3 \beta-(\alpha-\mathrm{L}-$ Rhamnopyranosyloxy)-5 $\beta, 14 \beta$-pregnane-14,20 diol 19.-The 20β-hydroxy tribenzoate $18(200 \mathrm{mg})$ obtained from compound 16 was stirred with 5% ammonia gas-methanol ($17 \mathrm{~cm}^{3}$) overnight, and after concentration and extraction the residue was purified by flash chromatography. Elution $(10 \%$ methanol-methylene dichloride) gave compound 19 (136 mg), m.p. 205-207 ${ }^{\circ} \mathrm{C}$ (decomp.) (from aq. MeOH) (lit., ${ }^{15}$ 243$246{ }^{\circ} \mathrm{C}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were consistent, as was the RBA, with those reported earlier. ${ }^{15}$

14-Hydroxy-3 3 -(tri-O-benzoyl- α-L-rhamnopyranosyloxy)$5 \beta, 14 \beta$-pregnan-20-one 17 from Compound 18.-A solution of the 20β-hydroxy tribenzoate $18(535 \mathrm{mg})$ and PDC (537 mg) in methylene dichloride ($25 \mathrm{~cm}^{3}$) was stirred at room temperature until oxidation was complete by TLC (14 h). Diethyl ether (100 cm^{3}) was added and the mixture was filtered through a Celite pad. The ether filtrate was washed with water and evaporated to give the 20 -ketone 17 (445 mg), m.p. $195-200^{\circ} \mathrm{C}$ (from aq. MeOH).

14-Hydroxy-3 β-(tri-O-benzoyl- α-L-rhamnopyranosyloxy$5 \beta, 14 \beta$-pregnan-20-one trans-Oxime 20.-The 20-ketone 17 $(100 \mathrm{mg})$ was treated with hydroxylamine hydrochloride (100 mg) as described for compound $\mathbf{2 a}$, to give the trans-oxime $\mathbf{2 0}$ (41 mg), m.p. $206-208^{\circ} \mathrm{C}$ (from aq. EtOH) (Found: C, 71.2; $\mathrm{H}, 7.1 ; \mathrm{N}, 2.0 . \mathrm{C}_{48} \mathrm{H}_{57} \mathrm{NO}_{10}$ requires $\mathrm{C}, 71.35 ; \mathrm{H}, 7.1 ; \mathrm{N}$, 1.7%).
$20 \alpha-21 \mathrm{a}$ and 20β-Nitro-3 β-(tri-O-acetyl- α-L-rhamnopyranosyl-oxy)-5 $3,14 \beta$-pregnan-14-ol 21 b .-To a refluxing solution of the trans-oxime $20(600 \mathrm{mg})$ in propan-1-ol $\left(30 \mathrm{~cm}^{3}\right)$ was added sodium (1.2 g) in small portions during 2 h . The solution was adjusted to $\mathrm{pH} 9-10$ (pH paper) with $4 \% \mathrm{HCl}$, water $\left(50 \mathrm{~cm}^{3}\right.$) was added, and the mixture was extracted with ethyl acetate to give the 20ξ-amine isomers (165 mg). The 20ξ-amine (140 mg) was oxidized with dimethyldioxirane-acetone solution $\left(5 \mathrm{~cm}^{3}\right)$ as described for compounds $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ to give the 20ξ-nitro isomers $24 \mathrm{a} / \mathrm{b}(101 \mathrm{mg})$. The 20ξ-nitro compound $24 / \mathrm{b}(60 \mathrm{mg})$ was treated with pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$ and acetic anhydride $(0.5$ cm^{3}) as described above for compounds 4 a and 5a. Flash chromatography (60% diethyl ether-hexane) gave the 20α-nitro triacetate 21a (18 mg), m.p. $186-188^{\circ} \mathrm{C}$ (from diethyl etherhexane) (Found: $\mathrm{C}, 62.3 ; \mathrm{H}, 8.0 ; \mathrm{N}, 2.0 . \mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{11}$ requires C, 62.15 ; H, 8.1 ; N, 2.2%).

Further elution gave the 20β-nitro triacetate $21 b(19 \mathrm{mg})$, m.p. $175-177^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: C, 62.1; H, 7.9; N, 2.45%).
20α-Amino- 22a and 20 - Amino- 3β-(tri-O-acetyl- $\alpha-\mathrm{L}-$ rhamno-pyranosyloxy)-5 $\beta, 14 \beta$-pregnan-14-ol 22 b .-Following the procedure described above for compound 15 , the 20α-nitro triacetate 21a (50 mg) gave the 20α-amino triacetate 22a (45 $\mathrm{mg})$. The 20β-nitro triacetate $21 \mathrm{~b}(100 \mathrm{mg})$ similarly gave the 20β-amino triacetate $\mathbf{2 2 b}$ (55 mg). Both were obtained as noncrystalline gums from purification by flash chromatography on silica by elution with chloroform-methanol-diethylamine (100:10:0.75).
20α-Amino- 23 a and 20β-Amino- $3 \beta-(\alpha-\mathrm{L}$-rhamnopyrano-syloxy)-5 $\beta, 14 \beta$-pregnan-14ol 23b.-The 20β-amine 22 a (34 mg) was dissolved in methanol ($5 \mathrm{~cm}^{3}$), 10% ammonia gasmethanol ($1.5 \mathrm{~cm}^{3}$) was added, and the mixture was stirred under argon for 18 h . After evaporation the residue was recrystallized to give title compound 23a (17 mg), m.p. 243$245^{\circ} \mathrm{C}$ (decomp.) (from methanol-diethyl ether) (Found: C ,
$60.6 ; \mathrm{H}, 9.7 ; \mathrm{N}, 2.3 . \mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 60.5 ; \mathrm{H}, 10.0$; $\mathrm{N}, 2.6 \%$).

Following the same procedure compound 22b (55 mg) gave the title compound 23b (16 mg), m.p. $251-252^{\circ} \mathrm{C}$ (decomp.) (from methanol-diethyl ether) (Found: C, 60.4; H, 9.8; N, 2.4%).

20 α-Nitro- 24a and 20 3 -Nitro-3 3 -(α-L-rhamnopyranosyloxy)$5 \beta, 14 \beta$-pregnan-14-ol 24b.-(a) From compounds 23a and 23b. The $20 x$-amino rhamnoside 23 a (31 mg) was oxidized with dimethyldioxirane-acetone solution ($10 \mathrm{~cm}^{3}$) as described above, to give the $20 x$-nitro rhamnoside $\mathbf{2 4 a}$ (7 mg), m.p. 274 $276{ }^{\circ} \mathrm{C}$ (from methanol-acetone-hexane) (Found: C, 59.6; H, 8.9; $\mathrm{N}, 2.6 . \mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{8} \mathrm{~N} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.2 ; \mathrm{H}, 9.0 ; \mathrm{N}, 2.6 \%$).

Following the same procedure, the 20β-amino rhamnoside 23b (40 mg) gave the 20β-nitro rhamnoside 24b (15 mg), m.p. $258-262^{\circ} \mathrm{C}$, having identical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR with the sample obtained from hydrolysis of compounds 21a and 21b (Found: C, $59.0 ; \mathrm{H}, 8.9 ; \mathrm{N}, 2.6 \%$).
(b) From compounds 21a and 21b. The 20ß-nitro triacetate 21b $(80 \mathrm{mg})$ was dissolved in a solution of methanol $\left(7 \mathrm{~cm}^{3}\right)$, triethylamine ($3.5 \mathrm{~cm}^{3}$, freshly distilled), and water ($0.25 \mathrm{~cm}^{3}$), and the mixture was stirred under argon for 3 days until hydrolysis was complete by TLC. The excess of solvent was evaporated under reduced pressure at room temperature, and flash chromatography and elution (7.5% methanol-methylene dichloride) gave compound 24b (58 mg), m.p. $260-263^{\circ} \mathrm{C}$ (from acetone-diethyl ether) (Found: C, 59.1; H, 8.9; N, 2.7\%).
Following the same procedure, the $20 x$-nitro triacetate 21a (80 mg) was hydrolysed to give compound $\mathbf{2 4 b}(20 \mathrm{mg}$), m.p. 257$261^{\circ} \mathrm{C}$ (from acetone-diethyl ether), mixed m.p. $258-262^{\circ} \mathrm{C}$ with the sample obtained from compound 23b (Found: C, 59.3; $\mathrm{H}, 8.9 ; \mathrm{N}, 2.5 \%$).

14,20x-25a and 14 $14,20 \beta$-Dihydroxy- $5 \beta, 14 \beta$-pregnan- $3 \beta-y l$ Acetate $\mathbf{2 5 b}$.-To a stirred solution of the 20 -ketone $1 \mathbf{1 a}^{3}$ (526 mg) in 20% aq. ethanol ($34 \mathrm{~cm}^{3}$) was added sodium borohydride (70 mg). After 30 min at room temperature no starting material remained (TLC). Following acidification with 12% acetic acid the mixture was extracted with methylene dichloride to give, from flash chromatography and elution (35% ethyl acetatelight petroleum), 25a (155 mg), m.p. $210-213^{\circ} \mathrm{C}$ (from acetonelight petroleum) (lit., ${ }^{17} 212-214^{\circ} \mathrm{C}$) and $\mathbf{2 5 b}(209 \mathrm{mg})$, m.p. $167-$ $169^{\circ} \mathrm{C}$ (from acetone-light petroleum) (lit., ${ }^{17} 168-168.5^{\circ} \mathrm{C}$).

14-Hydroxy-5 $3,14 \beta$-pregnane- $3 \beta, 20 x$-diyl 25c and -3 $3,20 \beta$ diyl Diacetate 25d.-The mixture of compounds $\mathbf{2 5 a} / \mathrm{b}$ (50 mg) obtained as described above from compound 1a was treated with acetic anhydride ($0.5 \mathrm{~cm}^{3}$) and pyridine ($0.5 \mathrm{~cm}^{3}$) for 18 h to give, after flash chromatographic separation (25% ethyl acetate-light petroleum), the non-crystalline $3 \beta, 20 \alpha$-diacetate 25c (9 mg) and the $3 \beta, 20 \beta$-diacetate 25d (26 mg), m.p. 144 $146{ }^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: C, 71.4; H, 9.4. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.6 \%$).

20x- 26a and 203-Hydroxy-5 β-pregn-14-en-3 3 -yl Acetate 26b.-Following the procedure described from compound 7a the $20 x$-alcohol $25 \mathrm{a}(58 \mathrm{mg})$ was treated with triphenylphosphine in carbon tetrachloride and acetonitrile to give compound 26a
 (Found: C, 76.4; H, 10.1. $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{3}$ requires C, 76.6; H, 10.1%).
Similarly, substrate 25b (40 mg) gave the 203-isomer 26b (15 mg), m.p. $160-161^{\circ} \mathrm{C}$ (from acetone-light petroleum) (Found: C, $76.4 ; \mathrm{H}, 10.1 \%$).
$5 \beta, 14 \beta$-Pregnane-3 $3,14,20 \alpha$-triol 27a and 203-(tert-Butyl-dimethylsiloxy)-5 $5,14 \beta$-pregnane- $3 \beta, 14$-diol $27 \mathbf{2 7}$.-The silyl ethers $28 \mathrm{a} / \mathrm{b}$ (see below) (105 mg) were dissolved in diethyl ether
($15 \mathrm{~cm}^{3}$) and LAH (40 mg) was added. After 0.5 h acetone and water were added and the mixture was adjusted to pH 8 (pH paper) with dil. HCl . Extraction with diethyl ether gave, after flash chromatography (35% ethyl acetate-light petroleum), the 20β-silyl ether $\mathbf{2 7 b}(40 \mathrm{mg})$, m.p. $170-172^{\circ} \mathrm{C}$ (from acetonelight petroleum) (lit., ${ }^{1} 171-173^{\circ} \mathrm{C}$), and the triol 27 a (17 mg), m.p. $210-212^{\circ} \mathrm{C}$ (lit., ${ }^{17}$ 208-213 ${ }^{\circ} \mathrm{C}$).

The 20α-silyl ether 28a (50 mg) in anhydrous diethyl ether was refluxed with LAH (20 mg) for 4 h . Excess of acetone was added and the pH was carefully adjusted to pH 8 with 0.1 mol $\mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with diethyl ether to give triol 27a (12 mg), m.p. 213-215 ${ }^{\circ} \mathrm{C}$ (from ethanol-methylene dichloride-light petroleum).

20 α 28a and 20 2 -(tert-Butyldimethylsiloxy)-14 β-hydroxy$5 \beta, 14 \beta$-pregnan- $3 \beta-y l$ Acetate 28b.--The 20ξ-alcohols $25 a /$ b (1 g) obtained from reduction with NaBH_{4} as described above were treated with $\mathrm{Bu}^{t} \mathrm{Me}_{3} \mathrm{SiCl}(1 \mathrm{~g})$ and imidazole (1 g) in dry dimethylformamide (DMF) ($30 \mathrm{~cm}^{3}$) and the solution was stirred for 16 h at room temperature. Work-up as before gave, after flash chromatography and elution (10% ethyl acetate-light petroleum), compound 28a (342 mg), m.p. $185-187^{\circ} \mathrm{C}$ (from diethyl ether-acetone) (Found: C, 70.6; H, 10.4. $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 10.6 \%$) and compound $\mathbf{2 8 b}^{1}(370 \mathrm{mg})$, m.p. $175-178{ }^{\circ} \mathrm{C}$ (from diethyl ether-light petroleum) (Found: C, $70.4 ; \mathrm{H}, 10.6 \%$).
20α-(tert-Butyldimethylsiloxy)-5 $5,14 \beta$-pregnane- $3 \beta, 14$-diol 29.-The 20α-silyl ether $28 \mathrm{a}(310 \mathrm{mg}$) was treated with 0.5 mol $\mathrm{dm}^{-3} \mathrm{KOH}$-abs. ethanol $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature for 4 h (TLC). The mixture was diluted with water and extracted with methylene dichloride to give the silylether 29 (82 mg), m.p. 135$137^{\circ} \mathrm{C}$ (from diethyl ether-light petroleum) (Found: C, 70.85; $\mathrm{H}, 11.2 . \mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 11.2 \%$).
3β-(α-L-Rhamnopyranosyloxy)-5 $\beta, 14 \beta$-pregnane-14,20 α-diol 30a and 20α-(tert-Butyldimethylsiloxy)-3 3 -($\alpha-\mathrm{L}$-rhamnopyr-anosylo.xy)- $5 \beta, 14 \beta$-pregnan-14ol 30b.-The 20α-silyl ether 29 $(130 \mathrm{mg})$ was treated with acetobromorhamnose $(1.0 \mathrm{~g})$ in methylene dichloride and Fetizon's reagent (1.6 g) as described for compounds 9 a and 9 b . After work-up the residue was treated with $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. KOH -abs. ethanol ($10 \mathrm{~cm}^{3}$) for 14 h , when brine $\left(40 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with methylene dichloride. The residue was separated by flash chromatography, which on elution (5% methanol-methylene dichloride) gave the silyl ether $\mathbf{3 0 b}(15 \mathrm{mg})$, m.p. $228-230{ }^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: $\mathrm{C}, 65.2 ; \mathrm{H}, 10.5 . \mathrm{C}_{33} \mathrm{H}_{61} \mathrm{O}_{7} \mathrm{Si}-5 \mathrm{H}_{2} \mathrm{O}$ requires C, $65.4 ; \mathrm{H}, 10.2 \%$) and compound $\mathbf{3 0 a}(22 \mathrm{mg})$, m.p. $273-$ $275^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: C, 64.3; H, 9.8. $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 64.8 ; \mathrm{H}, 9.7 \%$).

14-Hydroxy-3 β-(tris- β-D-digitoxosyloxy)- $5 \beta, 14 \beta$-pregnan-

 20-one trans-Oxime 32.-To a stirred solution of the methyl ketone ${ }^{3} 31$ (200 mg) (prepared as described in ref. 3) in a mixture of 95% ethanol ($20 \mathrm{~cm}^{3}$) and pyridine ($5 \mathrm{~cm}^{3}$) was added a mixture of hydroxylamine hydrochloride $(400 \mathrm{mg})$ and sodium acetate (286 mg) in water ($5 \mathrm{~cm}^{3}$). After 2 h under reflux the mixture was cooled, and diluted with methylene dichloride. The organic layer was washed with dil. hydrochloric acid to give the trans 20 -oxime 32 (142 mg), m.p. $252-255^{\circ} \mathrm{C}$ (from chloroform-acetone) (Found: C, 63.5; H, 8.9; N, 2.0. $\mathrm{C}_{39} \mathrm{H}_{65} \mathrm{NO}_{12}$ requires $\mathrm{C}, 63.3 ; \mathrm{H}, 8.85 ; \mathrm{N}, 1.9 \%$). ol 33.-A solution of the oxime $32(275 \mathrm{mg})$ in propan-1-ol (20 cm^{3}) was brought to reflux under argon and sodium (1.02 g) was added in small pieces over a period of 135 min . The solution was then cooled, and diluted with methylene dichloride, and the
organic layer was washed thoroughly with water to give the 20ξ-aminopregnane trisdigitoxoside 33 (115 mg), m.p. 205$209^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 64.4; H, 9.4; N, 1.8. $\mathrm{C}_{39} \mathrm{H}_{67} \mathrm{NO}_{11}$ requires $\mathrm{C}, 64.5 ; \mathrm{H}, 9.3 ; \mathrm{N}, 1.9 \%$).

14-Hydroxy-3 3 -(tris- β-D-digitoxosyloxy)- $5 \beta, 14 \beta$-pregnan-20-one 20-Hydrazone 34 .-The methyl ketone ${ }^{3} 31(250 \mathrm{mg})$ was refluxed with 85% hydrazone ($1 \mathrm{~cm}^{3}$) and triethylamine (freshly distilled, $6.6 \mathrm{~cm}^{3}$) in 95% ethanol ($20 \mathrm{~cm}^{3}$). After 2 h the solvents were evaporated off and several crystallizations gave the hydrazone 34 (120 mg), m.p. $220-242^{\circ} \mathrm{C}$ (decomp.) (from diethyl ether) (Found: C, 64.2; H, 9.5; N, 3.9. $\mathrm{C}_{39} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires C, 64.4; H, 9.7; N, 3.85\%).

14-Hydroxy-3 β-(tris- β-D-digitoxosyloxy)- $5 \beta, 14 \beta$-pregnan-20one 20 -Amidinohydrazone 35 .-The methyl ketone ${ }^{3} 31$ (100 mg) and aminoguanidine hydrogen carbonate (100 mg) in 95% ethanol ($10 \mathrm{~cm}^{3}$) were heated to reflux with sodium hydroxide (30 mg) under argon for 6 h , when TLC (10% methanolmethylene dichloride) indicated no starting material remained. The mixture was extracted with methylene dichloride and the organic layer was washed with water to give, after two crystallizations, the 20 -amidinohydrazone 35 (38 mg), m.p. $248.5-252{ }^{\circ} \mathrm{C}$ (from diethyl ether-methanol) (Found; C, 60.0 ; H, 8.7; $\mathrm{N}, 6.9 . \mathrm{C}_{40} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 60.2; $\mathrm{H}, 8.6 ; \mathrm{N}$, 7.0%).

20 $\boldsymbol{\xi}^{-N i t r o-3 \beta-(t r i s-~} \beta$-d-digitoxosyloxy)-5 $\beta, 14 \beta$-pregnan-14-ol 36.-A $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ dimethyldioxirane-acetone solution ${ }^{31}$ (26 cm^{3}) was added dropwise to a stirred solution of the $20 \xi-$ aminopregnane $33(350 \mathrm{mg})$ in methylene dichloride $\left(25 \mathrm{~cm}^{3}\right)$ at room temperature. After 15 min , TLC (10% methanolmethylene dichloride) showed no starting material remained. The solution was evaporated at $\sim 40^{\circ} \mathrm{C}$ on a rotary evaporator to give a residue, which was purified by flash chromatography. Elution (3% methanol-methylene dichloride) gave fractions of the 20ξ-nitropregnane $36\left(157 \mathrm{mg}\right.$), m.p. $215-223^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 62.0; H, 8.7; N, 1.8. $\mathrm{C}_{39} \mathrm{H}_{65} \mathrm{NO}_{13}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 8.7 ; \mathrm{N}, 1.85 \%$).

Acknowledgements

We thank the Medical Research Council of Canada and the Manitoba Heart and Stroke Foundation for financial support. The Bruker AM300 and AMX500 instruments were funded by the Natural Sciences and Engineering Research Council of Canada with additional financial support from the Manitoba Health Research Council (AM300), The University of Manitoba Research Board (AM300), The University of Manitoba (AMX500), The University of Winnipeg (AMX500), and Lakehead University (AMX500). We thank Mr. Todd Mereniuk and Mrs. Helena Majgier-Baranowska, Faculty of Pharmacy, University of Manitoba for technical assistance. F. S. LaBella is a Career Investigator of the Medical Research Council of Canada.

References

1 J. F. Templeton, V. P. S. Kumar, D. Bose and F. S. LaBella, J. Med. Chem., 1989, 32, 1977.
2 E. Chow, R. S. Kim, F. S. LaBella and G. Queen, J. Pharmacol., 1979, 67, 345.
3 J. F. Templeton, Y. Ling, J. Jin, M. A. Boehmer, T. H. Zeglam and F. S. LaBella, J. Chem. Soc., Perkin Trans. 1, 1991, 823.

4 E. P. Oliveto in Organic Reactions in Steroid Chemistry, ed. J. Fried and J. A. Edwards, Van Nostrand Reinhold, New York, 1972, vol. 2, p. 142.

5 J. A. Secrist and M. W. Logue, J. Org. Chem., 1972, 37, 335.
6 H. Spreitzer, G. Buchbauer and C. Puringer, Tetrahedron, 1989, 45, 6999.

7 L. Brown, J. Boutagy and R. E. Thomas, Arzneim-Forsch., 1981, 31(II), 1059.
8 R. H. DeWolfe, Carboxylic Ortho Acid Derivatives, Academic Press, New York, 1970, ch. 5.
9 K. Igarashi, Adv. Carbohydr. Chem. Biochem., 1977, 34, 272.
10 F. X. Jarreau and J. J. Koenig, U.S. Pat. 4885 280, 1989 (Chem. Abstr., 1990, 112, 179606h).
11 F. Theil, C. Lindig and K. Repke, Z. Chem., 1980, 20, 372.
12 R. W. Murray, S. N. Rajadhyaksha and L. Mohan, J. Org. Chem., 1989, 54, 5783.
13 T. Neilsen, J. Org. Chem., 1962, 27, 1998.
14 E. Vedejs, Org. React., 1975, 22, 401.
15 J. F. Templeton, P. Setiloane, V. P. S. Kumar, Y. Tan, T. H. Zeglam and F. S. LaBella, J. Med. Chem., 1991, 34, 2778.
16 E. H. Massey, H. E. Smith and A. W. Gordon, J. Org. Chem., 1966, 31, 684.
17 C. Lindig, J. Prakt. Chem., 1983, 325, 587.
18 G. C. Habermehl, P. E. Hamman and V. Wray, Magn. Reson. Chem., 1985, 23, 959.
19 D. M. Dodderell, D. P. Pegg and M. T. Bendall, J. Magn. Reson., 1982, 48, 323.
20 W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229.
21 A. Bax and G. Morris, J. Magn. Reson., 1981, 42, 501.
22 J. K. M. Sanders and J. D. Mersh, in Progress in Nuclear Magnetic Resonance Spectroscopy, eds. J. W. Emsley, J. Feeney and L. H. Sutcliffe, Pergamon Press, Oxford, 1982, vol. 15, p. 161.
23 K. Marat, J. F. Templeton and Yangzhi Ling, submigged to Magn. Reson. Chem.
24 K. Marat, J. F. Templeton and V. P. S. Kumar, Magn. Reson. Chem., 1987, 26, 25.
25 D. Neuhaus, J. Keeler and R. Freeman, J. Magn. Reson., 1985, 61, 553.
26 J. F. Templeton, S. V. P. Kumar, D. Bose, D. D. Smyth, R. S. Kim and F. S. LaBella, Can. J. Physiol. Pharmacol., 1988, 66, 1420.
27 A. Gelbart and R. Thomas, J. Med. Chem., 1978, 21, 284 and references therein.
28 Dictionary of Organic Compounds, 5th cumulative supplement, Eyre and Spottiswoode, London, 4th edn., 1969, p. 954.
29 G. M. Bebault, G. G. S. Dutton and C. K. Warfield, Carbohydr. Res., 1974, 34, 174.
30 E. Fischer, M. Bergmann and A. Rabe, Ber. Dtsch. Chem. Ges., Teil B, 1920, 53, 2362.
31 W. Adams, Y. Y. Chan, D. Cremer, J. Gauss, D. Schentzow and M. Schindler, J. Org. Chem., 1987, 52, 2800.
32 R. K. Ness, H. G. Fletcher and C. S. Hudson, J. Am. Chem. Soc., 1951, 73, 296.

Paper 2/02327J
Received 5th May 1992
Accepted 5th June 1992

[^0]: ${ }^{a}$ For solutions in CDCl_{3} (SiMe_{4} internal standard) unless indicated otherwise on a Bruker AM300 instrument. ${ }^{b}$ In $\mathrm{CD}_{3} \mathrm{OD}^{\mathrm{O}}{ }^{c}$ In $\mathrm{CDCl}_{3}-\mathrm{CD}{ }_{3} \mathrm{OD}(1: 1)$. ${ }^{d} 20.61,20.69(2 \times \mathrm{MeCO}), 171.67,171.70$ $(2 \times \mathrm{MeCO}), 24.29\left(\mathrm{MeCO}_{3}\right), 125.53\left(\mathrm{MeCO}_{3}\right)^{e}$ Assignments based on 2D analysis. ${ }^{f} 114.64(\mathrm{q}, J 285.7), 115.85(\mathrm{q}, J 288.0)\left(2 \times C \mathrm{~F}_{3} \mathrm{CO}\right) ; 155.94(\mathrm{q}, J 37.7), 156.98(\mathrm{q}, J 29.6)\left(2 \times \mathrm{CF}{ }_{3} \mathrm{CO}\right) .{ }^{g} \mathrm{The}$
 $(3 \times \mathrm{MeCO}) .{ }^{j}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}^{*}{ }^{k}$ The trisdigitoxoside is in agreement with digitoxin: 95.91 ($\left.1^{\prime}\right) 99.39,99.56$ ($\left.1^{\prime \prime}, 1^{\prime \prime \prime}\right), 37.40,37.76,38.47$ ($\left.2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}\right), 67.07,61.21,68.15\left(3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}\right), 82.73,83.02\left(4^{\prime}, 4^{\prime \prime}\right), 74.45$ $\left(4^{\prime \prime \prime}\right), 68.60,68.73\left(5^{\prime}, 5^{\prime \prime}\right), 70.20\left(5^{\prime \prime \prime}\right), 18.11,18.18,18.23\left(6^{\prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}\right) .{ }^{1} 159.03\left[=\mathrm{N}-\mathrm{NH} C(=\mathrm{NH}) \mathrm{NH}_{2}\right]{ }^{m-o}$ Chemical shifts are interchangeable within a column. ${ }^{p}$ Obscured by solvent signals.

